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Abstract

We introduce the Walrasian Markup equilibrium, an extension of Walrasian equilibrium that
adds a markup to the prices that consumers pay to ensure existence even in nonconvex quasi-
linear economies. Markup equilibria are resource-feasible, incur no budget deficit, and require
little more communication and computation than the Walrasian equilibrium. The Markup direct
mechanism is asymptotically dominant-strategy incentive-compatible. Our Bound-Form First
Welfare Theorem states that for any price vector, the welfare loss of any feasible allocation com-
pared to the first-best is at most the sum of (i) the budget surplus and (ii) any rationing losses
suffered by the participants. This implies that any Markup equilibrium with a small markup is
nearly efficient.
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1 Introduction

Walrasian equilibrium has long been a standard benchmark for economic outcomes because of its

many desirable properties: its allocations are feasible and efficient for producers and consumers,

its balanced budget requires no subsidies from any third party, and it has the fairness property

of offering the same prices to all participants. From an implementation perspective, it has two

additional good properties. The first, emphasized by Hayek (1945), is that prices economize on

communication: when a Walrasian equilibrium exists, its prices are the minimal information a

planner would need to communicate to allow each agent to check whether its proposed allocation

is part of an efficient plan.1 The second concerns incentives: The Walrasian mechanism provides

little opportunity for small market participants to profitably manipulate the plan.2

Mechanisms that aim to approximate Walrasian outcomes have sometimes been used in practice

for multi-product markets, such as electric power, in which products are distinguished by location

and time of day, and fishing rights, in which products are distinguished by location and species.

However, any attempt to implement the Walrasian mechanism must overcome multiple challenges.

The first challenge is that the just-cited applications often entail fixed costs of production and other

nonconvexities, with the consequence that in some cases, Walrasian equilibrium may fail to exist.

A mechanism allowing agents to report fixed costs needs a different procedure to determine prices

and allocations in those cases. In this paper, we extend the Walrasian mechanism by including

an extra pricing parameter. A Walrasian mechanism with markups or just markup equilibrium is

a triple (x, p, α) in which x is a feasible allocation for buyers and sellers, p is a price vector that

determines payments to sellers and α is a markup, with buyers paying according to the price vector

(1 + α)p. For (x, p, α) to be a markup equilibrium, all buyers and sellers must be assigned their

most preferred bundles at the prices they face, and the payments received from buyers must weakly

exceed the payments made to sellers. A minimal markup equilibrium is a markup equilibrium with

the smallest value of α. If there are finite, nonzero choke prices for both supply and demand, then

a minimal markup equilibrium always exists. Since (x, p) is a Walrasian equilibrium if and only

if (x, p, 0) is a markup equilibrium, the minimal markup equilibria coincide with the Walrasian

equilibria whenever the latter exist.
1 See also Nisan and Segal (2006) and Segal (2007), who prove that any decentralized communication system that

implements efficient allocations must communicate a vector of supporting prices to the agents.
2 For incentive analysis of Walrasian equilibrium at the limiting case of a continuum of consumers, see Roberts

and Postlewaite (1976) and Jackson (1992), while for analysis of the rates of convergence of incentives in finite
markets, see Azevedo and Budish (2019) and Watt (2022).
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Next are challenges related to feasibility and efficiency. A Walrasian allocation balances supply

and demand, and its payments to sellers are equal to the payments from buyers, so it is always

resource-feasible and budget-feasible, but notions of approximate Walrasian equilibrium including

pseudo-equilibrium and quasi-equilibrium found in Starr (1969) can specify plans that are not fully

feasible. In markup equilibrium, the allocations for each firm and consumer are individually feasible,

the total production of each good weakly exceeds its consumption, and the total revenue collected

from buyers weakly exceeds the payments made to sellers, so the markup outcome is fully feasible.

Moreover, just as Walrasian allocations are efficient; markup allocations with small markups are

nearly efficient.

A third set of challenges, emphasized by the mechanism design perspective, concerns incentives to

participate and report truthfully. If producers have fixed costs, then the marginal cost prices of

some Walrasian-like mechanisms can be insufficient to cover some producers’ full costs, violating

their participation constraints. Some Walrasian-like mechanisms seek to cover producers’ full costs

by adding so-called “uplift” payments, which can incentivize producers to exaggerate their fixed

costs. In a markup mechanism, there are no uplift payments: the linear prices are sufficient to

eliminate both the incentive and participation problems. In a markup equilibrium, production may

strictly exceed consumption, but there is no budget deficit because the markup in consumer prices

pays the cost of any excess production.

Fourth are challenges related to the communications and computations. For convex economies, if the

planner announces the proposed Walrasian allocation and prices, then each participant can verify

that its allocation is part of an efficient plan. For non-convex economies, if the planner announces

the allocation, prices and one parameter more – the markup, then each participant can verify that

its allocation is part of an approximately efficient plan. For the quasilinear cases we study in this

paper, the Walrasian allocation and prices for convex economies can be computed by solving a

convex optimization problem and its dual. The markup equilibrium allocation, prices and markup

for nonconvex economies can be computed by solving a series of convex optimizations and their

duals, as described below.

When the economist’s task is to reform an existing market, another concern is to limit disruption

for current participants. If a Walrasian-like mechanism is already being used in a nonconvex, multi-

product marketplace, then limiting disruption may call for implementing another Walrasian-like

mechanism, rather than, for example, adopting a Vickrey-Clark-Groves pivot mechanism. Changing
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to a pivot mechanism can be disruptive, requiring participants to adapt their processes and affecting

the values of their past capital investments. The pivot mechanism may also be unacceptable because

of its other serious disadvantages: it cannot guarantee that revenues weakly exceed costs, can

pay higher compensation to firms that produce less output,3 and can require impractical levels of

communication and computation.4

In addition to introducing markup equilibrium, this paper also introduces an extension of the First

Welfare Theorem for quasi-linear economies. We call this the Bound-Form First Welfare Theorem

because it gives an upper bound on the welfare loss of any feasible allocation x using any price

vector p, and delivers a bound of zero when the pair (x, p) is a Walrasian equilibrium.

To describe the theorem, we first need to define some terms. The welfare of any feasible allocation

x is defined as the sum of the values enjoyed by consumers minus the sum of the costs incurred

by firms; the welfare loss of x is defined to be the welfare of the first-best allocation minus the

welfare of x. Given an allocation and price vector (x, p), the rationing loss of firm f is the difference

between its maximum profit at prices p and the profit from its assigned allocation xf ; the rationing

loss for consumers is defined similarly. According to the theorem, for any price vector p and any

feasible allocation x, the welfare loss of x is bounded above by the sum of two terms: (1) the value

using prices p of any excess of production over consumption plus (2) the sum of the rationing losses

suffered by consumers and firms using prices p. For any Walrasian equilibrium (x, p), both terms
3 For example, suppose firm A can produce up to two units at a cost of $1 per unit and additional units at a

cost of $10 each, and firm B can produce any number of units at a cost of $2 each. If the demand specification
makes it efficient to produce exactly three units in total, then according to the pivot mechanism, firm A should
produce 2 units and be paid $4, and firm B should produce 1 unit and be paid $10: the firm that produces more
output receives the smaller payment.

4 The VCG pivot mechanism can require very large amounts of computation time and resources, especially when
applied to nonconvex markets. There are several reasons for this. First is the number of optimizations that the
pivot mechanism can require: one possibly nonconvex optimization to determine the allocation and a second
similarly difficult optimization for each bidder to compute its payment. Second, if participants are to use pivot
prices to guide their investment decisions, then the mechanism needs to compute and communicate the pivot
price for every participant and every potentially relevant bundle, multiplying the burdens of computation and
communication. Third and perhaps most importantly, computing pivot mechanism prices with good accuracy
requires that each of these optimizations achieve an unusual level of precision, because the pivot mechanism
computes each participant’s transfer as the difference between the maximum value when all participants are
present and the maximum value when one participant is excluded.

To illustrate the impact of imprecise computations, suppose that there are 50 identical producers and that the
optimization software initially finds the exact optimal allocation and the associated minimum cost. Further sup-
pose that the exact minimum cost of production would be 1% higher if one of the 50 firms were excluded. In that
case, the correct pivot price for any firm is about 3% of the total cost. If the additional cost minimizations were
to overestimate the minimum total cost by 3% – which for many purposes would be good enough computational
performance, then the calculated pivot price for each firm would be too high by 100%, doubling the planner’s
total payments to producers. Alternatively, if the computation error is 3% in the original allocation problem and
zero in the extra minimization problems, then the computed pivot prices could be zero or a negative number.
In contrast, the markup mechanism requires fewer and easier computations, as shown below.
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are zero.

Given a markup equilibrium (x, p, α), we can apply the Bound-Form First Welfare theorem to

bound the welfare loss of the allocation x using price vector p by an amount proportional to the

markup α. To see this, observe first that because firms produce their most preferred bundles at

p, producer rationing losses are exactly zero. The rationing losses for consumers can be positive

because, although each consumer n’s bundle xn is her most preferred one at the prices (1+α)p, the

consumer may prefer a different bundle at prices p. However, by the envelope theorem (Milgrom

and Segal, 2002), each consumer’s rationing loss is of a smaller order than α. Finally, if consumer

demand is strongly monotone, then any excess production is proportional to α. Adding up the three

terms, the implied bound on the total welfare loss is proportional to α.

The incentives for truthful reporting in the markup mechanism are conceptually similar to those of

the Walrasian mechanism in convex economies. In both mechanisms, participants expect to benefit

from a false report only to the extent that their reports affect the prices used to compute their

payments or receipts. We show that as the number of participants grows, with high probability,

any one participant’s effect on prices becomes vanishingly small.

To compute a markup equilibrium with a small α in a tractable way, we suggest an approach

that begins with two changes to the standard Walrasian welfare maximization problem for convex

economies: one to the constraints and one to the objective function. For constraints, our change

requires that the total production of the firms must weakly exceed the total consumption plus an

operating reserve, which is specified to depend on the largest nonconvexity but not on the numbers

of producers and consumers. Second, for any given markup α, the objective to be maximized is
Utility
1+α − Costs. Both of these changes distinguish the markup program from the Walrasian one.

Next, if the specified objective is not concave, we replace it with its concavification to create a convex

program. Solving the dual program yields the mark-up prices p; solving the primal problem yields

an approximate mark-up allocation x̂. If the approximate allocation of some producer is not on its

actual supply curve, then it is rounded to lie on the supply curve, giving us the markup allocation.

In the markup allocation, supply always weakly exceeds demand because any supply reduction due

to rounding can be replaced using the reserve. If the resulting plan is budget-feasible, meaning

that total payments by consumers weakly exceed those to producers, then the triple (x, p, α) is a

markup equilibrium. We use a line search to find (approximately) the smallest α that is part of a

budget-feasible plan, with each search candidate requiring a convex optimization and other steps as
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described above.

Following an earlier draft of this paper, Ahunbay, Bichler, Dobos, and Knörr (2024) performed

a computational test to assess the potential of this computable markup mechanism for European

wholesale spot electricity markets. That paper compared the markup equilibrium computations to

those of a widely used mechanism, which optimizes allocations using mixed integer programming,

computes prices using the dual of a relaxed version of the same optimization problem that omits the

integer constraints, and pays additional “uplift” compensation to ensure that total payments cover

producers’ fixed costs. The paper found that (1) markup computations “are considerably faster for

relevant problem sizes,” (2) uplift compensation in the alternative mechanism results in substantial

budget shortfalls, and (3) the markup allocation suffers only a small loss of welfare relative to the full

optimum. This comparison assumes that both mechanisms have access to true reports, omitting the

additional losses the alternative mechanism may suffer because of its incentives for false reporting.

The remainder of this paper is organized as follows. Section 1.1 contains a simple single product

example to illustrate how markup equilibrium is computed and to highlight its properties, and

Section 1.2 reviews the related literature. Section 2 introduces the quasilinear model and some

preliminaries, including the measures of nonconvexity that we will use. Section 3 introduces the

Bound-Form First Welfare Theorem. Section 4 introduces the markup equilibrium, including its

computation, feasibility, incentive properties, and efficiency guarantee. Section 5 concludes.

1.1 A Single Product Example

We illustrate markup equilibrium with a single product example that features nonconvexity in

production but not consumption.

On the supply side, each firm f can produce zero units at zero cost or any positive quantity up to its

capacity Kf by incurring a fixed cost Ff . Its marginal cost of production is zero up to its capacity.

If firm j produces at capacity, its average cost is af = Ff/Kf . Let K = maxf Kf be the largest

capacity among the firms. At any price p, firms will supply a total quantity of S(p) =
∑

{f |af≤p}Kf ,

which describes a discontinuous supply curve.

Total consumer values and demand in our example are described by a strictly concave value function

V (q) and an associated strictly downward-sloping demand function D(p).

Walrasian equilibrium requires that there is some price p such that D(p) = S(p). As illustrated in
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Figure 1: Five-firm example of Walrasian equilibrium nonexistence (here, firms are indexed in order
of af ). A markup equilibrium exists with total consumption and production equal to K1, price
p = a2 paid to firms, and markup α on prices paid by consumers chosen so D((1 + α)p) = K1.

the example depicted in Figure 1, discontinuities in the supply function may imply that no Walrasian

equilibrium exists. Indeed, considering a parameterized family of demand functions b+D(p), there

are intervals of the b parameter for which there is no solution to b+D(p) = S(p), so there can be

robust examples of demand functions for which Walrasian equilibrium does not exist.

Our extension of the Walrasian equilibrium is the markup equilibrium, which consists of a triple

(x, p, α), with x being the allocation, p the price per unit paid to producers, and (1 + α)p the

price per unit paid by consumers. The price and markup are chosen to avoid rationing and budget

deficits: in the example in Figure 1, one markup equilibrium involves production and consumption

of the quantity K1 with the price p = a2 paid to producers and a markup α so that demand matches

supply: D((1 + α)p) = K1.

In this paper, we offer a computational approach to identify a particular markup equilibrium in large

markets. The outer loop of the computation is a binary search for a suitable markup α ≥ 0.5 In

the inner loop, we adjust both the constraints and the objective of the usual welfare maximization

problem. For the constraints, we specify that total production by firms must exceed the total

allocation to consumers by at least K. For the objective, on the side of the firms, we convexify each

firm’s cost function by setting Cf (q) = afq for production up to capacity. It is convenient to let Ĉ(q)

denote the corresponding industry total cost and Ŝ(p) the corresponding industry supply function.
5 Since α ≥ 0, to ensure a compact search space, the binary search might search over β := 1/(1 + α) which lies in

[0, 1].
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On the consumer side, we rescale the value function, setting V̂ (q) = V (q)/(1 + α). With these

adjustments, the problem is to choose total industry production q to maximize V̂ (q −K) − Ĉ(q).

This is a convex optimization problem with its solution characterized by a first-order condition and

a price p that equates supply and adjusted demand, as follows:

Ŝ(p) = D((1 + α)p) +K

In the solution of this convex problem, each high-cost firm (ones with af > p) produces zero

and each low-cost firm (ones with af < p) produces at capacity. There may also be one firm

f ′ with af ′ = p that produces a fraction of its capacity. For our computed markup equilibrium,

the price is p, firm f ′ produces zero, and all the other producers and consumers have the same

allocation as was determined for the convexified problem. Because Kf ′ ≤ K, the total production

of the low-cost firms is at least D(1 + α)p, that is, the markup plan is resource-feasible. To be a

markup equilibrium, α must be chosen so that the plan is also be budget-feasible, which means that

pŜ(p) ≤ (1 + α)D((1 + α)p).

In the example of this subsection, if there are many firms, then no single firm has much incentive

to exaggerate its cost or understate its capacity in the markup mechanism, because such reports

have only a limited effect on the firm’s price. Moreover, misreporting is risky: if the firm reports a

too-high fixed cost, its allocation will be zero. With suitable penalties for non-performance, firms

are also deterred from overstating their capacities. At a markup equilibrium, there are no gains

available from trade among consumers or among firms, because each group faces a single price. By

the Envelope Theorem, there is little to be gained by adjusting the total output q. The welfare loss

in markup equilibrium is mainly attributable to the unconsumed portion of production, which is

some amount less than k, independent of the number participants in the market. As a percentage

of the trading volume, the total welfare loss decreases to zero as market participation grows.

Although this one-dimensional example is suggestive, it includes simplifying assumptions that need

to be relaxed for the general theory. Nonconvexities may not always take the form of fixed costs,

so we will need to work with more general measures of the nonconvexity of sets and determine the

operational reserve accordingly. In the one-dimensional problem, rounding the solution just means

rounding an output up or down, but that becomes subtler in higher dimensions. For example, a firm

that can produce one unit of good 1 or good 2 could be allocated (12 ,
1
2) in convexified optimization
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and to avoid rationing, the output of one good may need to be rounded up while the production of

the other is rounded down.

1.2 Related literature

The problem of nonconvexity for the existence of competitive equilibrium was discussed in a series

of papers by Farrell (1959), Rothenberg (1960), Koopmans (1961) and Bator (1961). Much of the

subsequent classical literature on nonconvexity in general equilibrium theory focused on concepts

of approximate equilibria which replace aggregate feasibility requirements with approximate feasi-

bility, measured in terms of distance in the commodity space between the aggregate supply and

demand, while maintaining the requirement that individual agents act optimally given the prices.

Starr (1969) showed the existence of such an approximate equilibrium in nonconvex production

economies, in which the maximum imbalance is proportional to the number of goods and a measure

of nonconvexity. Heller (1972) proved a similar result with an alternative measure of nonconvexity.

More recently, Nguyen and Vohra (2024) proved a bound for markets with indivisible goods that

depends only on a measure of preference complementarity of agents. We build on some of these

results (summarizing the key results we employ in Appendix B), but depart from this literature

by requiring that any feasible mechanism must always specify a feasible outcome. Influenced by

computer scientists’ approaches to approximations in mechanism design, we will be interested in

approximate efficiency and truthfulness, rather than approximate feasibility.6

A substantial literature has focused on identifying various conditions on preferences in markets

with indivisibilities, under which competitive equilibria exist despite nonconvexities. Contribu-

tors include Bikhchandani and Mamer (1997), Gul and Stacchetti (1999), Danilov, Koshevoy, and

Murota (2001), Sun and Yang (2006), Milgrom and Strulovici (2009), Hatfield, Kominers, Nichifor,

Ostrovsky, and Westkamp (2013), Baldwin and Klemperer (2019), Baldwin, Jagadeesan, Klemperer,

and Teytelboym (2023), and Nguyen and Vohra (2024). Milgrom (2009) emphasizes the reporting

language that agents use when goods are substitutes. None of these papers treat markets with fixed

costs such as those described above, in which competitive equilibria do not generally exist. Our

analysis seeks to develop practical mechanisms for those settings.

Goeree (2023) introduces an alternative equilibrium concept for nonconvex economies, “Yquilib-

rium,” which involves computing an allocation and prices that minimize the difference between the
6 Scarf (1967) also features an approximate efficiency objective.
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economic welfare and its dual. Unlike our markup equilibrium, the “Yquilibrium” can lead to agents

receiving allocations different from the ones demanded, which creates an additional incentive for

agents to misreport.

An alternative approach to establishing equilibrium existence in nonconvex markets is to study the

large market limit with a continuum of agents. Aumann (1966) showed that nonconvexities at the

level of the individual firm or consumer are no barrier to equilibrium existence in an economy with

a continuum of traders and divisible goods, while Azevedo, Weyl, and White (2013) demonstrated a

similar result for quasilinear economies with indivisibilities. In this paper, our markup mechanism

exists and is resource-feasible and nearly efficient even in finite economies. Yet another approach is to

allow nonlinear or personalized pricing rules, as explored by Wilson (1993), Chavas and Briec (2012),

Azizan, Su, Dvijotham, and Wierman (2020) and others, but mechanisms that use anonymous linear

prices may sometimes be preferred for other reasons, including ones related to communication and

computation as well as familiarity and perceived fairness.

A two-price solution to equilibrium nonexistence has also been proposed in a contemporaneous

contribution of Feldman, Shabtai, and Wolfenfeld (2021). The key difference between our approaches

is the structure and role of the two prices: Feldman et al. (2021) consider (one-sided) exchange

economies in which buyers who are allocated a good face one price for the good and buyers who

are not allocated a good face a different price for the same good. The role of the two prices in their

mechanism is to prevent buyers from wanting to change their bundle of goods from the one allocated

by the market designer. We restrict attention to mechanisms that use the same price vector for

all buyers (and similarly all sellers) regardless of whether they are allocated a good, which makes

achieving incentive-compatibility more difficult.

Our study is motivated by several important applications of linear pricing mechanisms with noncon-

vex production. In particular, we have taken inspiration from the novel market design for fisheries

rights in New South Wales, Australia, introduced by Bichler, Fux, and Goeree (2018, 2019), in

which the need to implement sustainable catches led to the exit of fishing boats, with an associated

loss of fixed costs. Other sectors with nonconvexities that have used linear prices include electricity

generation, with their large start-up and ramping costs, and radio spectrum, where geographical

complementarities can cause exposure problems.7

7 See Liberopoulos and Andrianesis (2016) for a summary of pricing mechanisms used in electricity markets with
nonconvexities, most of which include “uplift” (or side-payments) in addition to linear pricing, and Ausubel and
Milgrom (2002) for a discussion of complementarities in spectrum auctions.
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2 Model and preliminaries

2.1 Model

We employ a Walrasian model with a set of buyers N and a set of firms or sellers F , both finite.

Together A = N∪F is the set of agents. There are L varieties of consumable goods and a numeraire,

money.

Each buyer n ∈ N chooses a consumption bundle in X, a compact subset of RL
+ containing 0,

called the consumption possibility set. Buyer n has quasilinear preferences8 over bundles in X with

a continuous valuation function un : X → R, so that the buyer’s utility associated with receiving

allocation xn and paying t is Un(xn, t) = un(xn) − t. We suppose that the valuation functions

are bounded, nondecreasing with respect to the partial order ≥ on RL
+ and normalized so that

un(0) = 0. We let U be the space of possible valuation functions for the buyers, which we assume

is admissible in the sense of Aumann (1963).9

Each seller f ∈ F chooses a production bundle in the production possibility set Y , a compact subset

of RL
+ containing 0. Seller f has a cost function10 cf : Y → R+ which allows us to write f ’s profit

from producing yf ∈ Y and receiving payment t as πf (yf , t) = t − cf (yf ). The cost functions are

nondecreasing with respect to the partial order ≥ on RL
+ and normalized so that cf (0) = 0. Let C

be the space of sellers’ cost functions, which we also assume to be admissible.

An economy E consists of buyers with their valuation functions and sellers with their cost functions,

so that we may write E = ⟨N, (un)n∈N , F, (cf )f∈F ⟩. When it is clear, we use the shorthand E =

⟨N,F ⟩. At times, it is also convenient to associate E with the normalized counting measures µ on

U and ν on C defined by

µ(un) =
# of buyers in E with valuation function un

|N |
,

χ(cf ) =
# of sellers in E with cost function cf

|F |
,

8 The quasilinearity assumption allows our analysis to abstract from income effects, as is usual in mechanism
design analyses. For more discussion of the role of income effects see Morimoto and Serizawa (2015).

9 That is, it is possible to define a measure on U, equipped with an appropriate σ-algebra. For example the set of
bounded, continuous functions on a compact subset of RL is admissible, as is the set of bounded functions with
discontinuities of the first kind, or more generally, any subset of a Baire class (Aumann, 1963).

10 Note that sellers in this economy could equivalently be thought of as buyers with valuations −cf (yf ) and
payments −t. However, we will be interested in mechanisms that may charge buyers and sellers different prices,
and so it is convenient to distinguish the two groups in our notation.
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and to let ϕ = |F |
|N | , so that ⟨N,µ, ϕ, χ⟩ is an alternative specification of economy E.

Throughout, we will suppose that agent types—that is, the valuation functions un of buyers and

cost functions cf of sellers—are private information, but U,C, |N | and |F | are common knowledge.

In some results, we specialize to an independent private valuations (IPV) model, in which buyer

types are drawn i.i.d. from a common knowledge distribution µ on U and seller types are drawn

i.i.d. from common knowledge χ on C.

Allocations and efficiency An allocation x = ((xn)n∈N , (yf )f∈F ) is an assignment of consump-

tion bundles xn ∈ X to each buyer n ∈ N and production bundles yf ∈ Y to each seller f ∈ F . An

allocation is feasible if
∑

n∈N xn ≤
∑

f∈F yf . We denote by X the set of all feasible allocations.

We define the surplus S(x) associated with allocation x ∈ X by

S(x) =
∑
n∈N

un(xn)−
∑
f∈F

cf (yf ).

The efficient allocation problem is to solve

max
x∈X

S(x), (P)

with a solution denoted by x∗ ∈ argmaxx∈XS(x) and the resulting surplus S∗ = S(x∗).

For any allocation x ∈ X, we will refer to S(x) − S∗ as the deadweight loss of x and the ratio
S(x)−S∗

S∗ as the percentage loss at x.11

Pricing rules To prepare for our markup equilibrium, we allow two different price vectors pb, ps ∈

RL
+ for buyers and sellers such that if any buyer n purchases a bundle x, it makes a payment of

t = pb · x and if seller f supplies y, it receives a payment of t = ps · y.

Denote buyer n’s demand correspondence by Dn : RL
+ ⇒ X, which maps each price vector pb to the

set of utility-maximizing bundles Dn(p
b). Its indirect utility function is ûn(p

b) = maxx∈X un(x) −

pb · x. Similarly, denote seller f ’s supply correspondence by Sf : RL
+ ⇒ Y , which maps each price

vector ps to the set of profit-maximizing bundles Sf (p
s). Its indirect profit function is π̂f (p

s) =

maxy∈Y ps · y − cf (y).
11 Later we will make assumptions to rule out cases where S∗ = 0 so that this ratio is well-defined.
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2.2 Convex quasilinear economies

Convexity is defined with respect to the set of payoff-improving allocations for an agent in the

economy. The ū-upper contour set of buyer n ∈ N is defined by

UC ū
n = {(x, t) ∈ X × R : Un(x, t) ≥ ū},

while the π̄-upper contour set of seller f ∈ F is given by

UC π̄
f = {(y, t) ∈ Y × R : πf (y, t) ≥ π̄}.

We say that buyer n has convex preferences if the buyer’s feasible set X is convex and the upper

contour set UC ū
n is convex for all ū ∈ R, which is equivalent to the quasiconcavity of Un and the

concavity of the valuation function un. Seller f has convex technology if Y is convex and UC π̄
f is

convex for all π̄ ∈ R, which is equivalent to the quasiconcavity of πf and the convexity of cost

function cf .

Under the assumption of quasilinearity and the convexity of agents’ preferences and technologies,

we have the following statement of the fundamental welfare theorems of Arrow (1951) and Debreu

(1951). 12

Proposition 1. Suppose in (quasilinear) economy E that all buyers n ∈ N have convex preferences

and all sellers f ∈ F have convex technologies. Then a feasible allocation x ∈ X is efficient if and

only if there exists p ∈ RL
+, p ̸= 0 such that for all n ∈ N , xn ∈ Dn(p); for all f ∈ F , yf ∈ Sf (p);

and
∑

n∈N p · xn =
∑

f∈F p · yf .

Such a pair (p,x) is a competitive or Walrasian equilibrium.
12 The statement of Proposition 1 is stronger than the classic statements of the welfare theorems in the ‘only if’

direction, which is possible due to the quasilinear form of the utility and profit functions. Without quasilinearity
or an alternative assumption, it may only be possible to find prices so that agents are expenditure-minimizing
for a given level of utility or profit, that is, a price quasiequilibrium with transfers. With quasilinearity and
convexity, the efficient allocation program is a convex program. Since there exists a feasible allocation, Slater’s
Theorem (see, for example, Boyd and Vandenberghe (2004)) implies strong duality. A solution p∗ to the dual
program, infp∈RL

+

∑
n∈N ûn(p) +

∑
f∈F π̂f (p), and an efficient allocation x∗ comprise a saddle point for the

Lagrangian L(x, p) =
∑

n∈N un(xn) −
∑

f∈F cf (yf ) − p ·
(∑

n∈N xn −
∑

f∈F yf
)
, so that for any x ∈ X,

L(x, p∗) ≤ L(x∗, p∗). Because the Lagrangian is separable across agents, the saddle point condition implies
x∗
n ∈ Dn(p

∗) and y∗
f ∈ Sf (p

∗).
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2.3 Measures of nonconvexity and approximate equilibria

The nonconvexity of a set S can be measured in several ways by comparing S and its convex hull,

co(S). We will work with the following measures of nonconvexity of a set:

• The inner radius of S is r(S) = supx∈co(S) infT⊆S:x∈co(T ) rad(T ).

• The inner distance of S is ρ(S) = supx∈co(S) infy∈S ∥x− y∥.

For a convex set S, both measures are zero: r(S) = 0 = ρ(S). The two functions, which are

illustrated in Figure 2, measure the size of the set of points in co(S) but missing from S.

r(S)
S

ρ(S)

Figure 2: Measures of nonconvexity of a set

The nonconvexity of the preferences of buyer n ∈ N may be measured by the largest inner radius or

inner distance of their upper contour sets, that is rn = supū∈R r(UC ū
n) or ρn = supū∈R ρ(UC ū

n). Sim-

ilarly, the nonconvexity of the technology of seller f ∈ F may be measured by rf = supπ̄∈R r(UC π̄
f )

or ρf = supπ̄∈R ρ(UC π̄
f ). Let rE and ρE denote the largest of such measures among all the buyers

and sellers in economy E.

When agents’ upper contour sets are not convex, the second welfare theorem may not hold and

there may be no competitive equilibrium. Proposition 2, the Shapley-Folkman Lemma, assists in

identifying allocations which are nearly competitive equilibria.

Proposition 2 (Shapley-Folkman Lemma13). Let Si ⊆ RL for i = 1, ...,M , and let S =
⊕M

i=1 Si

13 It is perhaps most accurate to refer only to the result in the second sentence of Proposition 2 as the Shapley-
Folkman Lemma, although it was first reported by Starr (1969) as a result of private communication with Lloyd
Shapley and Jon Folkman. Starr (1969) then proved the first half of sentence three of Proposition 2, while Heller
(1972) proved the second half. For simplicity, we will refer to the whole of Proposition 2 as the Shapley-Folkman
Lemma. Budish and Reny (2020) provide an improved bound for the Shapley-Folkman Lemma involving a
different measure of nonconvexity of the set, which could also be applied in our setting to improve the constant

13



be the Minkowski sum of those sets. Then for any x ∈ co(S), x =
∑N

i=1 xi where xi ∈ co(Si) and

|i : xi ∈ co(Si) \ Si| ≤ L′ := min(L,M). Moreover, there exists y, y′ ∈ S such that ∥x − y∥ ≤

(maxi r(Si))
√
L′ and ∥x− y′∥ ≤ (maxi ρ(Si))L

′.

Proposition 2 has been used to establish results about approximate equilibria, which are constructed

as follows. First, consider a convexified version of the nonconvex economy in which the upper contour

sets of all agents are replaced by their convex hulls. This is equivalent to replacing each buyer’s

valuation function un by its concave envelope cav(un) and each seller’s cost function cf by its convex

envelope, vex(cf ). 14 The convexified economy is then Ê = ⟨N, (cav(un))n∈N , F, (vex(cf ))f∈F ⟩.

By Proposition 1, the convexified economy has a competitive equilibrium which is efficient (accord-

ing to the concavified valuation functions and convexified cost functions). Since the convexified

economy’s efficient allocation problem is a relaxation15 of the same problem for the original econ-

omy, the efficient surplus of the convexified economy is an upper bound on the efficient surplus of the

original economy. We call the resulting price-allocation pair (p,x) a pseudoequilibrium of the actual

economy E. Proposition 2 implies that x can be chosen so at most L′ agents in E are not utility- or

profit-maximizing at x given prices p and that there is a nearby allocation x′ such that all agents

are maximizing given prices p,16 but markets may not exactly clear at x′. The price-allocation pair

(p,x′) is called an approximate equilibrium.

Pseudoequilibria and approximate equilibria describe allocations rather than mechanisms. These

allocations can be infeasible or may impose large losses on some agents. This may make them

inappropriate for use as mechanisms for practical market designs. We utilize these ideas to devise

mechanisms that are computable, select feasible allocations, and have the other desirable properties

that we listed earlier.

but not the asymptotic rate of convergence in several of our results.
14 Recall that the concave envelope of a function is the pointwise smallest concave function everywhere above that

function, while the convex envelope of a function is the pointwise largest convex function everywhere below that
function.

15 That is, the constraint set is weakly larger than the original constraint set and the objective function is pointwise
weakly larger than the original objective.

16 To see this, note that if a buyer is assigned a bundle xn in x that is not utility-maximizing at p, then xn must
be the convex combination of bundles (x′

n) in X which are exposed points in un (i.e. where cav(un) = un),
and that the agents in the convexified economy must be indifferent between xn and these bundles. That is, the
concavified portions of buyers’ utility functions consist of (patches of) hyperplanes, and if an agent is assigned a
bundle on such a patch, then the price vector must be normal to that hyperplane. This implies that the original
buyer must be maximizing at bundles in (x′

n), which are on the relative boundaries of the patch of hyperplane.

14



3 Bound-Form First Welfare Theorem

When competitive equilibrium does not exist, no feasible allocation is supported by a single anony-

mous price vector that is the same for buyers and sellers, but resource-feasibility can be restored by

varying the price vectors for the two sides of the market or by rationing some agents, requiring them

to accept bundles that are not their most preferred ones at the specified prices. Given an allocation

and prices, we can characterize the welfare effects of rationing on buyers and sellers in terms of

rationing losses, which are defined as the excess of the payoff an agent would obtain from its most

preferred bundle given the prices compared to the payoff it receives in the prescribed allocation.

Definition 3.1. The rationing loss Rn(p, x) of buyer n at price p and allocation x is

Rn(p, x) = ûn(p)− Un(x, p · x).

The rationing loss Rf (p, y) of seller f is

Rf (p, y) = π̂f (p)− πf (y, p · y).

The rationing losses of allocation x = ((xn)n∈N , (yf )f∈F ) at price p is defined by

R(p,x) =
∑
n∈N

Rn(p, xn) +
∑
f∈F

Rf (p, yf ).

If competitive equilibrium does not exist, any price-allocation pair must entail rationing or wasted

supply (and thus budget deficit) or both. In our first main result, we show that the extent of such

rationing and budget losses fully characterize the efficiency of the allocation.

Theorem 1 (Bound-Form First Welfare Theorem). Let p ∈ RL
+ be a price vector and x = ((xn)n∈N , (yf )f∈F )

be any allocation. Then, the deadweight loss of allocation x satisfies

S∗ −S(x)︸ ︷︷ ︸
deadweight loss

≤ R(p,x)︸ ︷︷ ︸
rationing loss

+ p ·

∑
f∈F

yf −
∑
n∈N

xn


︸ ︷︷ ︸

budget deficit

.

Proof. Fix any efficient allocation x∗. By the definitions of indirect utility and consumer surplus,
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the following must hold for any prices:

ûn(p) ≥ un(x
∗
n)− p · x∗n

π̂f (p) ≥ p · y∗f − cf (y
∗
f ).

Summing these inequalities, we obtain

∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p) + p ·

∑
n∈N

x∗n −
∑
f∈F

y∗f

 ≥
∑
n∈N

un(x
∗
n)−

∑
f∈F

cf (y
∗
f ) = S∗.

Since x∗ is feasible, the third term on the left side is nonpositive, so

∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p) ≥ S∗

Subtracting S(x) and applying the definitions,

S∗ −S(x) ≤
∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p)−S(x) = R(p,x) + p ·

∑
f∈F

yf −
∑
n∈N

xn

 ,

which is what we sought to prove.

The Bound-Form First Welfare Theorem extends the First Welfare Theorem for quasilinear economies

by applying to any price-allocation pair (p,x) rather than just to competitive equilibria. If (p,x) is a

Walrasian equilibrium, then both the budget deficit and the rationing losses are zero, so the theorem

asserts that the welfare loss is zero, or equivalently that any Walrasian equilibrium is efficient.

One interpretation of the First Welfare Theorem is that prices act as a “certificate of optimality”:

given some allocation, if supporting prices exist for it, then that allocation is efficient. As Scarf

(1994) lamented, in the absence of convexity, there is, in general, no such optimality test. However,

one interpretation of Theorem 1 is as an approximate optimality test: if we can identify a price-

allocation pair for which the rationed surplus plus the net budget deficit is small, then the welfare

loss is small as well. Theorem 1 also begins to link incentives to efficiency: since for any fixed

price, agents would prefer not to be rationed, Theorem 1 suggests that a pricing mechanism with

little rationing and in which individual agents have little influence over prices will have both good

incentive properties and small deadweight losses. These observations are key to our extensions
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below.

4 The markup mechanism

4.1 Pricing mechanisms and approximate mechanism design

In this section, we study pricing mechanisms that map profiles of reports of sellers’ cost functions

(cf )f∈F and buyers’ value functions (un)n∈N to a feasible allocation x ∈ X and anonymous prices

for buyers and sellers, p = (pb, ps).17 We require that the mechanism specify outcomes that are

both resource feasible and budget-feasible so that for all report profiles,
∑

f∈F yf ≥
∑

n∈N xn and

ps·
∑

f∈F yf ≤ pb·
∑

n∈N xn. We do not delve into the important question of how agents communicate

their potentially complicated costs and values to the mechanism; instead, we assume that the

reporting language is sufficiently rich to allow true preferences to be reported by buyers and sellers.18

For convenience, we restate some familiar definitions. A pricing mechanism is

(a) efficient if the output allocation x is an efficient allocation given the reported value and cost

functions,

(b) ex post incentive-compatible (EPIC) if truthful reporting is an ex post Nash equilibrium of the

reporting game induced by the mechanism,

(c) interim incentive-compatible (IIC) if truthful reporting maximizes each agent’s expected pay-

offs under the mechanism, given its knowledge of its type and the distribution of types of

other buyers and sellers, and

(d) ex-post individually-rational (IR) if, given reported value and cost functions, the allocation

and prices determined by the mechanism deliver each agent a payoff (utility or profit) no worse

than non-participation (here, 0).

It is typically impossible for a mechanism to exactly satisfy these desirable properties; instead, we

seek mechanisms satisfying appropriate approximations to these goals. A pricing mechanism is
17 We choose not to consider randomized mechanisms, both because these are unnecessary to achieve our objectives

and because they raise daunting practical issues, including most importantly very high trust requirements in the
mechanism designer and the possible failure of ex post individual rationality for ex ante individually rational
lotteries.

18 The design of reporting languages to report complex preferences for economic mechanisms has been studied by
Milgrom (2009), Klemperer (2010), Bichler, Goeree, Mayer, and Shabalin (2014), Bichler, Milgrom, and Schwarz
(2022) and others.
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(a) ε-efficient if the deadweight loss of x is bounded by ε given the reports,19

(b) ε-EPIC if truthful reporting is an ε-ex post Nash equilibrium,

(c) ε-IIC if, for each agent, the expected payoff associated with any report in the mechanism is

no more than ε greater than that of the truthful report, given its knowledge of its type and

the distribution of types of other buyers and sellers, and

(d) ε-individually-rational (ex post) if each agent obtains a payoff of at least −ε given its report.

The Walrasian mechanism inputs reports of value and cost functions and outputs a Walrasian

equilibrium price and allocation. In case there are multiple Walrasian equilibria, we suppose that the

mechanism has a predetermined rule for selecting among them (and we make a similar assumption

when multiplicity arises in the other mechanisms discussed in this paper). Walrasian mechanisms

are efficient, individually rational and have good large-market incentive properties (discussed further

in Section 4.3) but can only be applied in settings in which Walrasian equilibria are guaranteed to

exist.

We are interested in extensions of the Walrasian mechanism that can be applied in settings where

Walrasian equilibria may not exist. We seek mechanisms that perform well in large markets, with

approximations to efficiency that depend on |N |. LetEt = ⟨Nt, µt, ϕt, χt⟩ be a sequence of economies

indexed by t = 1, 2, ..., and let REt
:= min{rEt

√
L, ρEtL}. We make the following additional

assumptions as the economy grows large.

Assumption 1 (Existence of limit economy). As t → ∞, |Nt| → ∞ and ϕt → ϕ ∈ (0, 1). Further-

more, µt converges weakly to probability measure µ∞ on U and χt converges weakly to measure χ∞

on C.

Assumption 2 (Individual nonconvexities are bounded). There exists R > 0 with REt < R for all

t.

Assumption 3 (Growing gains from trade). As t → ∞, the efficient surplus S∗
t grows at least as

quickly as |Nt| asymptotically, or in Knuth’s (1976) asymptotic notation, S∗
t = Ω(|Nt|).20

Assumption 4 (Prices are bounded). There exists M > 0 such that the minimum distance between
19 In each case, we allow ε to depend on properties of E (and implicitly (Et)t∈N if E is part of a sequence), so that,

for example, O(1/|Nt|)−efficiency refers to a deadweight loss of x that is O(1/|Nt|).
20 Recall that f(x) = Ω(g(x)) if lim infx→∞ |f(x)|/g(x) > 0.
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demand and supply, dH

(∑
n∈Nt

Dn(p),
∑

f∈Ft
Sf (p)

)
,21 is at least R for sufficiently large t and

p ∈ RL
+ such that ∥p∥ < 1

M or ∥p∥ > M .

Assumption 1 asserts that for large t, the important variation among economies is their scale: the

proportions of various types converge to a limit. Assumption 2 asserts that there is a uniform bound

on the size of any nonconvexity across the sequence of markets, limiting the impact of any single

firm’s or consumer’s nonconvexity in a large economy.22 Assumption 3 is the condition that the

efficient surplus per participant is bounded away from zero. Assumption 4 implies that there is a

compact set of possible prices for which the aggregate demand and supply are nearly equal.

4.2 Markup mechanisms

We now introduce markup mechanisms, which are designed to maintain a no-rationing property

similar to that of the Walrasian mechanism. If agents are not rationed, it may be impossible to

find prices such that all supply is demanded by buyers. In order to pay for any unwanted supply

provided by the firms, we use a markup on the prices paid by buyers.

Definition 4.1 (Markup equilibrium). A markup equilibrium is a triple (α, p,x) consisting of a

markup parameter α ≥ 0, a price p ∈ RL
+ and a resource-feasible allocation x such that:

(a) payments for sellers are determined by price vector p and sellers are not rationed given these

prices, so yf ∈ Sf (p);

(b) payments for buyers are determined by price vector (1+α)p and buyers are not rationed given

these prices, so xn ∈ Dn((1 + α)p); and

(c) budgets are at least weakly balanced:
∑

n∈N (1 + α)p · xn −
∑

f∈F p · yf ≥ 0.

A markup mechanism is a mechanism that inputs reports of cost and value functions and outputs

a markup equilibrium. We are especially interested in markup mechanisms that select α close to

zero and leave few goods unallocated, because their allocations are nearly efficient. This follows

by applying Theorem 1 at the price-allocation pair (p,x): if few goods are unallocated, the budget

deficit at price p is small, while if prices p and (1+α)p are close, the rationing losses for each buyer

at price p are small. This latter claim follows by an envelope theorem argument, which formalized

in Proposition 3.
21 Here, dH is the Hausdorff distance, where dH(S, S′) is defined by letting dist(x, S) = infy∈S ∥x − y∥ and

dH(S, S′) = max{supx∈S′ dist(x, S), supx∈S dist(x, S′)}.
22 It suffices here to assume that the consumption possibility set X does not grow with t, since R ≤ rad(X).
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Proposition 3. Let bundle x be demanded by buyer n at price p, so x ∈ Dn(p). Consider some

other price p′ ̸= p. Then the rationing loss of buyer n at allocation x given price p′, Rn(x, p
′) is

O(∥p− p′∥).23

If computational challenges were not a concern, a market designer may seek to identify a markup

mechanism with the smallest loss, which we call a minimum markup mechanism. The pair (p, x) is a

Walrasian equilibrium if and only if the triple (x, p, 0) is a markup equilibrium, and in that case the

latter is also the minimum markup equilibrium. In nonconvex economies, however, solving for the

minimum markup mechanism is difficult. We now show that an O(1)-efficient markup mechanism—

that is, one for which the percentage loss in welfare is at most inversely proportional to the number

of agents in the economy—can be identified using only convex optimization problems and a one-

dimensional binary search. Before providing a technical description of this pricing mechanism and

its analysis, we sketch intuitively the steps of our approach, echoing the example in the introduction.

For a fixed α, we select (p,x) to be the equilibrium price-and-allocation pair of a related economy

with three changes from the actual economy: (1) every buyer’s value function is replaced by the

smaller function un/(1+α), (2) all values and costs are then replaced by their concave or convex hulls,

respectively,24 and (3) we add an operational reserve for each good, which is a quantity demanded

by the auctioneer in the amount of RE := min{rE
√
L, ρEL}. Step (1) in this construction leads

to prices and allocations such that buyers would demand exactly the same allocations using their

actual value functions un and their marked-up prices of (1 + α)p. We apply the Shapley-Folkman

Lemma (Proposition 2) to round x to one of the demanded allocations for each agent while changing

the net demand for each good by at most R units. To maintain feasibility after that change, we

balance with an offsetting change from the reserve allocated to the auctioneer in step (3).

Excluding the auctioneer’s demand, the resulting final allocation always has supply greater than or

equal to demand—it is resource-feasible—and its excess supply is no more than 2R units of each

good. Any excess supply can result in a loss of efficiency (units allocated to the auctioneer are

wasted), but the quantity allocated to the auctioneer is bounded by an amount that is independent

of the size of the market.25

23 Recall Knuth’s (1976) big O notation: f(x) = O(g(x)) if lim supx→∞ |f(x)|/g(x) < ∞.
24 This need not be computationally expensive. For example, if the value and cost functions are reported to the

mechanism using a mixed integer program, the mechanism may simply convert integer variables to real variables
to obtain the convex hulls in the form of linear or quadratic programs.

25 The choice of R units of each good as a set-aside for the auctioneer in step (3) is a theoretical guarantee. It
might be possible to allocate fewer units to the auctioneer in step (3) and arrive at a more efficient feasible
allocation using the same approach. We note that an alternative approach could be to start by checking for
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Since the price vector and the excess supply of goods in a markup equilibrium are bounded, the

budget imbalance at price p is also bounded. As trade increases with the size of the economy, the

markup, α, needed to guarantee budget balance is inversely related to market size: it is O(1/N).

Thus, the total welfare loss from the markup mechanism is bounded by a constant plus a term that

is inversely proportional to market size.

Definition 4.2 (simple markup mechanism). The simple markup mechanism is the markup mech-

anism with parameters (α∗, p∗,x∗) determined as follows. If all reported values are concave and

all reported costs are convex, set α∗ = 0 and choose (p∗,x∗) to be some Walrasian equilibrium.

Otherwise, for each α > 0, consider the following convex program:

min
p∈RL

+

max
xn∈co(X),yf∈co(Y )

∑
n∈N

cav(un)(xn)

1 + α
−

∑
f∈F

vex(cf )(yf )− p ·

∑
n∈N

xn +R1L −
∑
f∈F

yf

 ,

where 1L is the vector of ones in RL. Let (pα, x̃α) denote any solution to this program.

From x̃α, we obtain, via Proposition 2, an allocation xα with ∥xα − x̃α∥ ≤ R such that xαn ∈

maxx∈X
1

1+αun(x)− p · x for each n ∈ N and yαf ∈ Sf (p). By construction, this xα will be feasible

in E. Let

α∗ = min

α

∣∣∣∣∣∣
∑
n∈N

(1 + α)pα · xαn −
∑
f∈F

pα · yαf ≥ 0

 , (A)

and define p∗ = pα
∗ and x∗ = xα∗ .

In Theorem 2, we show that the simple markup mechanism is well-defined (that is, the minimum

in (A) exists) and the resulting mechanism is O(1/|Nt|)-efficient. Before doing so, we note some

other important properties of the markup mechanism that follow directly from the construction.

First, the equilibrium is resource-feasible and budget-feasible. Second, the equilibrium allocation

and payments are individually rational for each agent. For sellers, this follows because their profits

are identical to those in the pseudoequilibrium used in the construction. For buyers, the pseudoe-

feasible allocations with zero units set aside (these would correspond to competitive equilibria) and then increase
the set-aside intelligently until a budget-feasible markup mechanism is identified, but we leave such details for
future research.

21



quilibrium price pα and consumption allocation in x̃α satisfy

1

1 + α
un(x̃

α
n)− pα · x̃αn =

1

1 + α
un(x

α
n)− pα · xαn ≥ 0

so that un(x
α
n)− (1 + α)pα · xαn ≥ 0 as well.

Theorem 2. Let Et be a sequence of economies satisfying Assumptions 1–4. Then

(a) the simple markup mechanism is well-defined (that, is the minimum in (A) is attained),

(b) the simple markup mechanism’s markup α∗ ≤ O(1/|Nt|), and

(c) the deadweight loss of the simple markup mechanism’s allocation is O(1), so the percentage

loss is O
(
1/|Nt|

)
.

Although the rates of convergence in Theorem 2 are stated in terms of |Nt|, by Assumption 1, the

same asymptotic rate of convergence holds with respect to |Ft| or |At|.

4.3 Incentives

In the Walrasian and markup mechanisms, both buyers and sellers receive their optimal bundles

given their prices, so an agent can profit from false reports only to the extent that it can influence

its prices. Moreover, because the prices in the simple markup mechanism are Walrasian equilibrium

prices of a related convex economy, the limited ability of agents to manipulate Walrasian prices in

large economies implies a similar difficulty for the markup mechanism.

We now briefly discuss the most relevant literature related to the agents’ ability to influence prices

in large markets. Roberts and Postlewaite (1976) initiated the formal literature of this subject in

a study of a sequence of exchange economies with the number of agents going to infinity. They

represented the sequence of economies by measures µt on U with limt→∞ µt = µ∞, showing that if

the Walrasian price correspondence is continuous at µ∞, then each agent’s influence on the price

goes to zero as t increases. Jackson (1992) shows in the same model that an agent’s optimal reported

demand converges in the L∞ norm to the demand associated with that agent’s true preferences.

Watt (2022) studies the rate of this convergence, showing that a condition on the demand and

supply correspondences, called strong monotonicity, ensures “fast” convergence of incentives in the

Walrasian mechanism, where “fast” in this context means at a rate (approximately) inversely pro-

portional to the number of agents in the economy.
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Definition 4.3 (Strong monotonicity).

(a) A buyer n is active at price p if Dn(p) ̸= {0}.

(b) Buyer n’s demand correspondence Dn : RL
+ ⇒ X is strongly monotone if there exists some

m > 0 such that for all p, p′ at which buyer n is active and for all d ∈ Dn(p), d
′ ∈ Dn(p

′),

(p− p′) · (d′ − d) ≥ m∥p− p′∥2.

(c) A seller f is active at price p if Sf (p) ̸= {0} and there is some β > 1 such that Sf (βp) ̸= Sf (p).

(d) Seller f ’s supply correspondence Sf : RL
+ ⇒ Y is strongly monotone if for all p, p′ at which

seller f is active and for all s ∈ S(p), s′ ∈ S(p′),

(p− p′) · (s− s′) ≥ m∥p− p′∥2.

Strong monotonicity is a condition on how quickly demand or supply changes in response to price

changes: in settings with one good, strong monotonicity is equivalent to a lower bound on the

absolute value of the slope of the firm’s supply curve and the buyer’s demand curve. If each buyer

has strongly monotone demand and each seller has strongly monotone supply, Watt (2022) shows

that the resulting sequence of economies is perturbation-proof, which implies that the maximum

influence of any one agent on Walrasian prices is O
(
1/|Na

t |
)
, where Na

t is the set of active agents

at the Walrasian price. Furthermore, if each buyer is drawn independently at random from some

distribution µ over U and each seller is drawn independently at random from χ over C for which

the expected demand and supply correspondences are strongly monotone,26 the maximum ex post

benefit of misreporting under the Walrasian mechanism is OP

(
1/|Nt|1−ε

)
for all ε > 0, which means

that it is nearly O
(
1/|Na

t |
)

with probability approaching 1.

While the above results considered ex post incentives, Azevedo and Budish (2019) studied interim

incentives and show that the Walrasian mechanism (with a finite set of buyer and seller types) is

strategy-proof in the large, which implies that the benefit to any agent of misreporting against any

full-support, independent and identically-distributed distribution of agent types tends to zero at

O(1/|Nt|
1
2
−ε) for all ε > 0.

26 Here the expectation is with respect to the measure over economies induced by draws of agents from µ and χ.
We clarify the meaning of the “expected demand and supply correspondences” in Appendix A.3.
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Theorem 3, proved in Appendix A.3, adapts these results to the markup mechanism.

Theorem 3. Let (Et)t∈N = (⟨Nt, µt, ϕt, χt⟩)t∈N be a sequence of economies satisfying Assump-

tions 1–4 and suppose that a markup mechanism with markups αt is applied to Et.27

(a) Suppose (Et)t∈N are economies with values and costs drawn according to independent full-

support probability distributions µ and χ defined on finite type spaces U and C. Then the

markup mechanism is strategy-proof-in-the-large and O(1/|Nt|
1
2
−ε)-IIC for any ε > 0.

Now suppose that the markup satisfies αt ≤ O(1/|Nt|) as in the minimal and simple markup mech-

anisms.

(b) Suppose that each buyer in each Et has strongly monotone demand and that each seller has

strongly monotone supply. Then the markup mechanism is O(1/|Na
t |)-EPIC, where Na

t is the

number of active buyers and sellers at the mechanism’s respective prices.

(c) Suppose that (Et)t∈N are economies with values and costs drawn independently according to

distributions µ and χ for which the expected demand and supply correspondences are strongly

monotone. Then, the maximum ex post benefit of misreporting for any agent is OP

(
1/|Nt|1−ε

)
,

for any ε > 0, and the mechanism is O(1/|Nt|1−ε)-IIC.

4.4 Computational properties

While equilibrium computation is hard in general,28 computing the Walrasian equilibrium in concave

quasilinear economies reduces to solving a convex optimization problem and its dual. A wide class

of such optimization problems are efficiently solvable, including problems with self-concordant or

strongly convex objectives. For example, Walrasian prices in economies with strongly monotone

supply and demand may be efficiently computed via tâtonnement (Watt, 2022).

In contrast, finding efficient allocations in many nonconvex economies is computationally complex

even with quasilinear preferences. For example, the problem of identifying an optimal allocation

in the fisheries market of Bichler et al. (2018) involved solving a large integer programming prob-

lem. Because integer programming is NP-hard, no efficient optimization algorithm is known for all

instances of such problems, although heuristics and approximations are sometimes useful.

The approach in this paper is based on approximation. Conditional on α, our simple markup
27 The markups may be determined endogenously, as in the minimal and simple markup mechanisms.
28 See, for example, Chen, Dai, Du, and Teng (2009) and Daskalakis, Goldberg, and Papadimitriou (2009).
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mechanisms require solving only a convex optimization problem. Identifying the optimal markup

α∗ in the simple markup mechanism is more challenging, although a binary search algorithm for α

might be employed, in practice, to identify a small markup that ensures weak budget balance. Since

the welfare loss of the simple markup mechanism is O(α), small markups are associated with small

losses. Ahunbay et al. (2024) provide further details on how to adapt our markup mechanism for

practical computations, focusing on an application to European wholesale spot electricity markets.

4.5 A related mechanism

Our markup mechanisms are related to a linear pricing mechanism which was proposed for allocating

commercial fisheries licenses in New South Wales: the maximum surplus anonymous pricing mech-

anism described by Bichler et al. (2018).29 That mechanism solves the usual surplus optimization

problem

max
x∈X

∑
n∈N

un(xn)−
∑
f∈F

cf (yf ),

but subject to the constraint that there exist prices pb and ps satisfying

(a) Individual rationality: for all n ∈ N, f ∈ F , un(xn)− pb · xn ≥ 0 and ps · yf − cf (yf ) ≥ 0.

(b) Budget balance:
∑

n∈N pb · xn ≥
∑

f∈F ps · yf .

A corollary of Theorem 2 is that this mechanism has a deadweight loss that is bounded by a constant

independently of the market size |N |. We have introduced and analyzed markup mechanisms rather

than studying the just-described alternative mechanism for two main reasons. First, the alternative

mechanism is hard to scale up because it requires solving nonconvex optimization problems, while

the simple markup mechanism can be implemented by solving convex optimization problems (plus

a binary search). Second, the alternative mechanisms may involve rationing at the prevailing prices,

which can give agents an additional incentive for false reporting that is avoided by the markup

mechanism.

5 Conclusion

In some regulated sectors of the economy, with nonconvexities in production or consumption and

multiple closely interrelated products, Walrasian-like mechanisms are already in use. For example,
29 A variant of this mechanism was later implemented in New South Wales.
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in wholesale electricity markets with products distinguished by time and location, producers often

incur fixed costs to start their plants, ramping production up or down to deliver power at different

times, and large power users rely on prices to guide consumption choices. In markets for fishing

permits with products distinguished by species and location, participants pay fixed costs to staff a

boat and send it to sea. For these markets with their nonconvexities, Walrasian equilibrium may

not exist, so the Walrasian mechanism cannot be implemented unchanged.

This paper adopts a market-design perspective to the problem of extending the Walrasian mech-

anism to apply in non-convex economies. Its proposed extension draws on two older branches of

economics research: one that evaluates reporting incentives in the Walrasian mechanism in convex

economies and another that identifies price-allocation pairs that, while not necessarily feasible, are

close to Walrasian in other ways. Our market design approach requires that any recommended

allocation be exactly resource-feasible – not just approximately so – and may also require budget-

feasibility, so that no external funds are needed to operate the system. Our proposed markup

equilibrium, which is feasible in both these ways, has no close antecedent in either tradition.

We have shown that markup equilibria exist and have properties similar to those of Walrasian equi-

librium. Because markup equilibrium uses linear prices for producers and consumers, it economizes

on communication and computation and supports a robust system that many market participants

are likely to find familiar and fair. When markups are small, its allocations are nearly efficient. We

have shown how small-markup equilibrium can be computed in practice with welfare losses bounded

by an amount that is proportional to the largest relevant nonconvexity. Incentives in the markup

mechanism depend on participants’ abilities to manipulate their prices, leading to results resembling

those known to apply for the Walrasian mechanism in the case of convex economies.

The markup mechanism that we have studied suffers inefficiency almost exclusively from overpro-

duction. One might wonder: can another mechanism with similar properties do better? Instead of

setting different prices for the two sides of the market, an alternative approach would use rationing,

forcing participants on one side of the market, say consumers, to consume a bundle that is different

from their most preferred ones at the prices they must pay. Our Bound-Form First Welfare Theorem

provides a tool to evaluate the welfare losses of any such mechanism, although a separate analysis

would be required to assess the incentive of any such alternative mechanism.

We have adopted the market design approach in this paper to be able to treat concerns that are

hard to quantify, such as ones about communications, computation, and familiarity. This approach
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takes a different view about “hard” and “soft” constraints compared to many older theories. Many

extensions of Walrasian equilibrium to non-convex economies treat resource constraints and budget

constraints as soft ones that should be satisfied only approximately, but our approach requires a

mechanism that satisfies those constraints exactly. While many mechanism design analyses require

that participants should be unable to gain from misreporting, our market design approach imposes a

softer constraint, leading to mechanisms in which the potential gains to misreporting are vanishingly

small, but not necessarily zero, in large economies. For some important applications including the

two described above, the markup mechanism that satisfies constraints in this way provides an

appealing way to confront the real-life problems of market design.
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A Proofs omitted from the main text

A.1 Proof of Proposition 3

Proof. We offer two proofs of this claim: the first directly from the definitions and the second

highlights the relationship with the envelope theorem.

For the first proof, let x′ ∈ Dn(p
′). We have that

Rn(p
′, x) = un(x

′)− p′ · x′ − (un(x)− p′ · x).

But since x ∈ Dn(p), we have u(x′)− p · x′ ≤ u(x)− p · x, so that

Rn(p
′, x) ≤ p · x′ − p · x+ p′ · x− p′ · x = (p− p′) · (x′ − x),

which is O(∥p− p′∥) since x′, x ∈ X, a compact set.

For the second proof, write

Rn(p
′, x) = ûn(p

′)− (un(x)− p′ · x)

= ûn(p
′)− (un(x)− p · x)− p · x+ p′ · x

= ûn(p
′)− ûn(p) + (p′ − p) · x.

Now let p(t) = (1− t)p+ tp′ for t ∈ [0, 1] and apply the Milgrom and Segal (2002) envelope theorem

to the parametrized utility maximization problem

ûn(p(t)) = max
x∈X

un(x)− p(t) · x,

to give

ûn(p
′) = ûn(p)−

∫ 1

0
(p′ − p) · d(t)dt.

for selections d(t) ∈ Dn(p(t)). Substituting into the expression for Rn(p
′, x) above, we obtain

Rn(p
′, x) = −

∫ 1

0
(p′ − p) · d(t)dt+ (p′ − p) · x =

∫ 1

0
(p′ − p) · (x− d(t))dt

which is bounded above by (p′−p) · (x−x′), the same expression as before, since (p′−p) · (x−d(t))
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is increasing in t by the law of demand.

A.2 Proof of Theorem 2

Part (a) Fix someE and consider any sequence αi → α and selections Revi of revenues
∑

n∈N (1+

αi)p
αi ·xαi

n −
∑

f∈F pαi ·yαi
f associated with some markup mechanisms (αi, p

αi ,xαi) constructed as in

Definition 4.2. We will show that limiRevi is obtainable as the revenue of some markup mechanism

(α, pα,xα) so that the infimum in equation (A) is attained (and thus the minimum exists).

By the saddle point condition associated with the objective in Definition 4.2, we have that there are

some x̃αi maximizing over co(X) the objective
∑

n∈N
cav(un)(xn)

1+αi
−

∑
f∈F vex(cf )(yf ). As αi →

α, this objective hypo-converges30 (since it is continuous and bounded) to
∑

n∈N
cav(un)(xn)

1+α −∑
f∈F vex(cf )(yf ), so that x̃αi → x̃α for some x̃α that maximizes this latter objective. By op-

timality, each pαi lies in the superdifferential ∂∗ of the concavified valuation functions of each buyer

and the subdifferential of the convexified cost functions of each seller at x̃αi . For these concave /

convex functions, the super- and subdifferential correspondences are upper hemicontinuous, so that

the sequence of pαi must converge to some pα in the super- and subdifferentials at x̃α. Finally,

since the demand and supply correspondences are upper hemicontinuous, the convergence of prices

implies that xαi must approach some xα such that xαn ∈ Dn((1 +α)pα) and yαf ∈ Sf (p
α). Thus the

limit of Revi is attained as the revenue of some markup mechanism (α, pα,xα) as required.

Part (b) For notational simplicity, we drop the index for t in the prices, premiums and allocations.

The construction in Definition 4.2 ensures, via Proposition 2, that
∑

f∈F yαf −
∑

n∈N xαn ≤ (2R)1L.

Thus, it suffices to show that for sufficiently large |Nt|, there is an α such that

α
∑
n∈N

pα · xαn ≥ (2R)pα · 1L.

Moreover, if this α = O
(

1
|Nt|

)
, then since α∗ < α, (b) will follow. To arrive at this result, we will

show that for fixed α > 0 close enough to zero,
∑

n∈N pα · xαn is Ω(|Nt|), while pα · 1L is O(1).

30 See Rockafellar and Wets (2009), Section 7.B.
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Let Sα be the value of the saddle point problem

min
p∈RL

+

max
x∈X

∑
n∈N

cav(un)(xn)

1 + α
−

∑
f∈F

vex(cf )(yf )− p ·

∑
n∈N

xn +R1L −
∑
f∈F

yF

 .

First, note that Sα is Θ(|Nt|) for sufficiently small α by Assumption 3.31 To see this, denote by

f(|Nt|) =
∑

n∈Nt
un(x

∗
n) and g(|Nt|) =

∑
f∈Ft

cf (y
∗
f ). Assumptions 1, 3 and the boundedness of

utilities and costs implies that the efficient surplus is Θ(|Nt|). As a result, lim infN→∞
f(N)
N = u > 0,

say, and lim supN→∞
g(N)
N = c > 0, with u−c > 0. Then Sα ≥ lim infN→∞

f(N)
(1+α)N −g(N) = u

1+α−c,

which is positive for sufficiently small α.

Now we show that this implies
∑

n∈N pα · xαn is Ω(|Nt|) for small, fixed α. To see this, note

that since
∑

f∈Ft
cf (y

α
f ) is Ω(|Nt|), individual rationality of the sellers (in the perturbed economy)

implies that
∑

f∈Ft
pα · yαf is Ω(|Nt|). But then by complementary slackness

∑
n∈Nt

pα · xαn =∑
f∈Ft

pα ·yαf −Rpα ·1L, and since Assumption 4 implies ∥p∥ ≤ M, we must have that
∑

n∈N pα ·xαn
is Ω(|Nt|).

Since for α near zero,
∑

n∈N pα ·xαn is Ω(|Nt|) and (2R)pα · 1L is O(1) (where R is O(1) by assump-

tion 2), for sufficiently large |Nt|, there is some α (and thus some least α by (a)) such that

α
∑
n∈N

pα · xαn ≥ (2R)pα · 1L,

and furthermore, this α is O
(

1
|Nt|

)
. Since α∗ < α, we have that α∗ is O

(
1

|Nt|

)
, as required.

Part (c) We now apply the First Welfare Bound to show that the allocation xα∗ is approxi-

mately efficient. In order to satisfy the assumptions on prices in Theorem 1, we imagine xα∗ was

implemented with a single price vector pα∗ and (therefore) a budget deficit. Theorem 1 tells us that

S(x∗)−S(xα∗
) ≤ R(pα

∗
,xα∗

) + pα
∗ ·

∑
f∈Ft

yα
∗

f −
∑
n∈Nt

xα
∗

n

 . (1)

By construction, in xα∗ at prices pα∗ , no sellers are rationed, while at prices (1+α∗)pα
∗ , no buyers

are rationed. But (1) requires the rationing of buyers at price pα
∗ . For this, we use Proposition 3:

since α∗ is O
(

1
|Nt|

)
and ∥pα∗∥ is bounded (by Assumption 4), this implies that Rn(p

α∗
, xα

∗
n ) is

31 Recall that f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x))
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O
(

1
|Nt|

)
, and so R(pα

∗
,xα∗

) =
∑

n∈Nt
Rn(p

α∗
, xα

∗
n ) is O(1).

Finally, we note that the budget deficit (the second term on the right of Equation (1)) is O(1) since

the excess supply is bounded by construction and each component of pα∗ is O(1). Thus Theorem 2

follows.

A.3 Proof of Theorem 3

Part (a) This follows by simply noting that all markup mechanisms are envy-free, and so Theorem

1 of Azevedo and Budish (2019) implies the result.

Parts (b) and (c) First, we formally define the expected supply and demand correspondences.

Given distribution ν on V, The expected indirect utility function is defined pointwise for p ∈ P by

Eν [û(p)] =

∫
V

ûn(p)dν(un),

and similarly the expected indirect profit function is

Eχ[π̂(p)] =

∫
C

π̂f (p)dχ(πf ).

The expected demand correspondence is then Eν [D(p)] = −∂Eν [u(p)] and the expected supply

correspondence is Eχ[S(p)] = ∂Eχ[π(p)].32

Parts (b) and (c) follow directly from the corresponding theorems for the Walrasian mechanism—

namely, Theorems 1, 3 and 4 adapted as in Appendix C of Watt (2022). To see this, we show that

the objective for the markup mechanism—both under truthful reporting and after misreporting by

a single agent—differs from the objective of the Walrasian mechanism for the convexified economy

by a O(1)−Lipschitz convex function, which constitutes a perturbation under the definition in Watt

(2022). Suppose that under truthful reporting, the mechanism chooses some markup α ≥ 0 and that

under a misreport by an agent, the mechanism chooses markup α′ ≥ 0. The markup mechanism

(seller) prices pα under truthful reporting minimize the dual objective

1

1 + α

∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p)− p ·R1L,

32 The expected demand and supply correspondences can also be defined using the set-valued integral of Aumann
(1965), but we refer the reader to Watt (2022) for details on this construction.
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while under the misreport, the (seller) price vector pα
′ minimizes

1

1 + α′

∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p)− p ·R1L.

Note that these objectives do not have cav or vex in them since the indirect utility and profit

functions are the same for the original valuations and costs as their concavified/convexified versions.

The Walrasian mechanism for the convexified economy minimizes

∑
n∈N

ûn(p) +
∑
f∈F

π̂f (p).

This objective and the α−objective differ by

α

1 + α

∑
n∈N

ûn(p)− p ·R1L.

Since α ≤ O(1/N), we have α
1+α ≤ O(1/N) as well, while

∑
n∈N ûn(p) is O(N)−Lipschitz since

its subdifferential is total demand at p which is O(N) (and the Lipschitz constant is the largest

selection from the subdifferential). This implies that the perturbation above is O(1)-Lipschitz. A

similar analysis applies for the α′-objective.

B Nonconvexity and approximate equilibria

We begin with a slightly stronger statement of the Shapley-Folkman Lemma that is used in general

equilibrium theorem with nonconvexities.

Proposition 4. Let Si ⊆ RL for i = 1, ..., N , S =
⊕N

i=1 Si and L′ = min(L,N). Then for any

x ∈ co(S):

(a) (Shapley-Folkman Lemma) x =
∑N

i=1 xi where xi ∈ co(Si) and |i : xi ∈ co(Si) \ Si| ≤ L′.

(b) (Starr, 1969) If Si is ordered so that r(Si) is nonincreasing in i, then there is y ∈ S such that

|x− y| ≤
√∑L′

i=1 r(Si)2.

(c) (Heller, 1972) If Si is ordered so that ρ(Si) is nonincreasing in i, then there is y ∈ S such

that |x− y| ≤
√∑L′

i=1 ρ(Si)2.
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These results have been used in the general equilibrium context to obtain approximate equilibria,

which are price-allocation pairs (p,x) such that xn ∈ Dn(p) for all n, yf ∈ Sf (p) for all f but∣∣∣∑n∈N xn −
∑

f∈F yf

∣∣∣ ≤ s for some s > 0. In particular, the allocation associated with an approxi-

mate equilibrium may have excess demand and therefore be infeasible. The approximate equilibrium

is obtained by identifying the competitive equilibrium associated with a convexified version of the

economy (in which each agent’s upper contour set is replaced by its convex hull) and applying

the results of Proposition 4 to the resulting allocation. The approximate equilibrium analogues of

Proposition 4 are contained in Proposition 5 below.

Proposition 5. For economy E = (N,F ):

(a) (Starr, 1969) There is x ∈ co(X) and p ∈ RL
+, p > 0 such that |n : xn ∈ co(X)| + |f : yf ∈

co(Y )| ≤ L and for all other agents, xn ∈ Dn(p) and yf ∈ Sf (p).

(b) Let rn = supū∈R r(UC ū
n) and rf = supπ̄∈R r(UC π̄

f ). Let δ ≥ 0 satisfy rn ≤ δ for all n ∈ N

and rf ≤ δ for all f ∈ F . Then there exists p ∈ RL
+, p > 0, xn ∈ X and yf ∈ Y such that

xn ∈ Dn(p) for all n ∈ N , yf ∈ Sf (p) for all f ∈ F and
∣∣∣∑n∈N xn −

∑
f∈F yf

∣∣∣ ≤ δ
√
L.

(c) Let ρn = supū∈R ρ(UC ū
n) and ρf = supπ̄∈R ρ(UC π̄

f ). Let δ′ ≥ 0 satisfy ρn ≤ δ′ for all n ∈ N

and ρf ≤ δ′ for all f ∈ F . Then there exists p ∈ RL
+, p > 0, xn ∈ X and yf ∈ Y such that

xn ∈ Dn(p) for all n ∈ N , yf ∈ Sf (p) for all f ∈ F and
∣∣∣∑n∈N xn −

∑
f∈F yf

∣∣∣ ≤ δ′L.

The statement of Proposition 5(a) is standard, but the statements of Proposition 5(b) and (c) are

stronger than the classical statement due to Starr (1969) and Heller (1972). Again, the quasilinearity

of agent preferences allows us to conclude that agents are utility- and profit-maximizing, rather than

just expenditure-minimizing.

Finally, we introduce a more general class of quasilinear preferences to which many of our results

also apply and which offer a meaningful interpretation in terms of perceived complementarity and

substitutability of goods. Nguyen and Vohra (2024) introduced the concept of the generalized

∆-single improvement property, which is a generalization of the well-known single improvement

property.

Definition B.1. The preferences of buyer n ∈ N satisfies the generalized ∆-single improvement

property (or satisfy ∆−substitutes) for some ∆ > 0 if for any price vector p > 0, any two bundles

x, y ∈ Dn(p) and any price change δp such that δp · x > δp · y, there exist a ≤ (x − y)+ and

b ≤ (y − x)+ such that:
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(a) |a|+ |b| ≤ ∆

(b) δp · a > δp · b, and

(c) x− a+ b ∈ Dn(p).

Here (x− y)+ denotes the vector whose ℓth component is max(xℓ − yℓ, 0).

The ∆ in this definition captures a measure of the substitutability and complementarity between

goods. Preferences with the single improvement property of Gul and Stacchetti (1999) are contained

in the class with ∆ = 2.

By our assumption on the compactness of X and Y , all preferences and technologies satisfy the

general ∆-improvement property for some ∆ (as noted by Nguyen and Vohra (2024)). But the

following stronger relationship between the inner radii of preferences and the ∆-single improvement

property also holds.

Proposition 6. Let rn = supū∈R r(UC ū
n). Then the preferences of buyer n ∈ N satisfy the gener-

alized ∆−single improvement property for all ∆ > 2
√
2rn.

Proof. Let the preferences of buyer n satisfy rn = supū∈R r(UC ū
n). Let x, y ∈ X and p ∈ RL

+ be

given such that x, y ∈ Dn(p). Suppose |(x−y)+|+|(y−x)+| ≥ 2rn (else the preferences immediately

satisfy the ∆ improvement property for ∆ = 2rn).

For any ϵ > 0, let z ∈ RL
+ be the unique convex combination of x and y such that |x− z| = rn + ϵ

and write z = λx + (1 − λ)y. By construction (z, p · z) ∈ co(UC
un(x)−p·x
n ). Then by the bound

on the nonconvexity of the preferences, there is a set T ⊆ UC
u(x)−p·x
n with rad(T ) ≤ rn such that

(z, p · z) =
∑

(x′,t′)∈T α(x′,t′)(x
′, t′) where

∑
(x′,t′)∈T α(x′,t′) = 1.

We now argue that for all (x′, t′) ∈ T , x′ ∈ Dn(p) and t′ = p · x′. To see this, note that x ∈ Dn(p)

implies un(x
′)− p · x′ ≤ un(x)− p · x. Summing, we have

un(x)− p · x ≥
∑

(x′,t′)∈T

α(x′,t′)[un(x
′)− p · x′]

=
∑

(x′,t′)∈T

α(x′,t′)un(x
′)− p · z

=
∑

(x′,t′)∈T

α(x′,t′)[un(x
′)− t′]
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On the other hand, since (x′, t′) ∈ UC
u(x)−p·x
n we have un(x

′)− t′ ≥ u(x)−p ·x. The only way these

can simultaneously hold is if un(x′)− t′ = u(x)− p · x for all (x′, t′) ∈ T.

However, we then have
∑

(x′,t′)∈T α(x′,t′)[un(x
′)− p ·x′] = u(x)− p ·x. This implies that at least one

of un(x′)− p · x′ ≥ un(x)− p · x. But then x ∈ Dn(p) implies that un(x′)− p · x′ = un(x)− p · x for

all x′, so x′ ∈ Dn(p).

By construction, |x− x′| ≤ 2rn + ϵ. But then ||x− x′||1 ≤ 2
√
2rn + ϵ as well.

Clearly, the generalized ∆-single property can be readily extended to sellers, by replacing the ex-

pressions for utility with those for profits, and an analogue of Proposition 6 also holds.

Nguyen and Vohra (2024) demonstrate the following approximate equilibrium result in a setting

with indivisibilities (so that X ⊆ ZL
+ and Y ⊆ ZL

+).

Proposition 7. Suppose all buyers’ preferences and sellers’ technologies satisfy the generalized

∆-improvement property and that X ⊆ ZL
+ and Y ⊆ ZL

+. Then there exists p ∈ RL
+, p > 0,

xn ∈ X and yf ∈ Y such that xn ∈ Dn(p) for all n ∈ N , yf ∈ Sn(p) and for each ℓ ∈ L,∣∣∣∑n∈N xnl −
∑

f∈F yfl

∣∣∣ ≤ ∆− 1.

Note that the concept of approximate equilibrium in this result is somewhat stronger than the

previous results since the maximum imbalance in supply and demand is bounded good-by-good,

rather than in terms of Euclidean distance in commodity space. However, depending on the relative

size of ∆, the inner radii of nonconvexity and the breadths of nonconvexity of preferences, any of the

approximate equilibrium bounds in Proposition 5(b), 5(c) or 7 may be strongest for our purposes.
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