

A bandit model of trade with two-sided learning

Mitchell Watt and Yunus Aybas

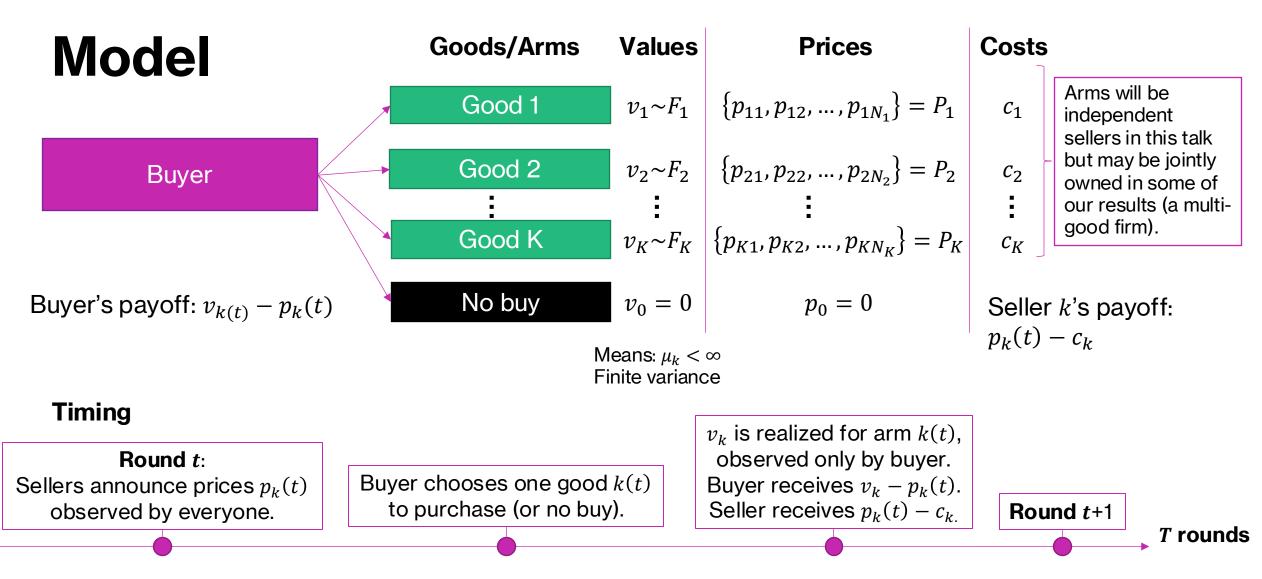
Preliminary

Introduction

- We study a problem of trade in a setting with one buyer, many sellers and many goods, repeated interaction and two-sided uncertainty about valuations.
 - Buyers and sellers engage in experimentation and seek to *learn* value distributions and costs, and exploit information learned.
 - Interpret as a 'strategic armed bandit' (as in Braverman et al. 2019).
- CS perspective: we seek **algorithms** for the buyer which provide payoff guarantees for all possible value distributions / cost profiles.
 - **'Negative' result:** classical bandit regret-minimizing algorithms may be exploited by sellers and result in very low payoffs for the buyer.
 - **'Positive' result:** we describe an algorithm for buyers with good payoff guarantees given optimal response by sellers.

Agenda

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark
- 4. Negative results
- 5. Positive results
- 6. Conclusion and next steps



Information structures:

- Mostly interested in **two-sided uncertainty:** neither buyer nor seller knows distributions *F_i*.
- Will also use one-sided uncertainty (seller knows F_i) as a benchmark.
- Will usually assume all sellers see which arm the buyer chooses.

Solution concept

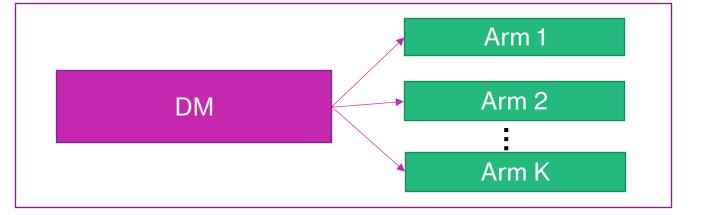
- Typical approach in economics: Markov perfect equilibrium
 - Not well-defined under 'Knightian' uncertainty about valuation distributions.
 - Difficult! Likely non-unique, complicated.
- We take a CS-inspired approach
 - Goal: An **algorithm** for the buyer with good **payoff guarantees**, assuming that sellers are behaving 'reasonably'.
 - The algorithm should be robust to the distributions F_1, \ldots, F_K and costs c_1, \ldots, c_K .
 - The algorithm will usually be random, in which case we seek payoff guarantees with high probability or in expectation.
 - The payoff guarantees might be relative to the maximal possible payoffs ('regret').
 - Sellers will be playing dominant strategies / approximate Nash equilibria / minimizing their own regret.

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark
- 4. Negative results
- 5. Positive results
- 6. Conclusion and next steps

Multi-armed bandits: review

Classic bandit varieties

- Stochastic bandit: $v_{k,t} \sim F_k$ iid
- **Bayesian bandit:** learner assumes distribution $v_{k,t} \sim F_k(. | \theta)$ with prior $\pi(\theta)$ over θ .
- Adversarial bandit: $v_{k,t}$ is chosen by some (possibly adaptive) adversary.



- DM chooses one of *K* arms each round, over *T* rounds.
- On choosing arm k(t), DM receives $v_{k(t),t}$.
- DM seeks to maximize $\text{Rev} = \sum_{t=1}^{T} v_{k(t),t}$.
- Alternatively, DM minimizes Regret = $\max_{k} \sum_{t=1}^{T} v_{k,t}$ Rev

Bandit algorithms

- Typically, choosing randomly gives $\Theta(T)$ regret.
- We are interested in algorithms that result in sublinear regret.

 Exploration vs exploitation trade-off

f	Stochastic Bandit $v_{k,t} \sim F_k$	UCB (Upper Confidence Bound) • Choose arm at time <i>t</i> which maximizes Sample mean of observed rewards + $\sqrt{\frac{c \log t}{\text{Number of times pulled}}}$ • Expected regret is $O(\log T)$ with constant depending on $\mu^* - \mu^{(2)}$	
	Bayesian Bandit $v_{k,t} \sim F_k(\cdot \theta)$ $\theta \sim \pi(\theta).$	• Citting Index , optimal for $T \rightarrow \infty$	
	Adversarial Bandit	EXP3 • Given: $\gamma \in [0,1]$. Initialize: $w_k(t) = 1$. • In each round, choose k with probability $p_k = (1 - \gamma) \frac{w_k(t)}{\Sigma w_j(t)} + \frac{\gamma}{K}$. • Update weight of chosen arm as $w_k(t + 1) = w_k(t) \exp\left(\gamma \frac{v_{k,t}}{Kp_k}\right)$. • Expected regret is $O(\sqrt{TK \log K})$	

Strategic-armed bandits

Braverman, Mao, Schneider and Weinberg (2019)

- $w_{k,t} \sim F_k$ is drawn, and arm k (if chosen) determines how much of $w_{k,t}$ to pass on, $v_{k,t} < w_{k,t}$.
- Differences from our setting: existence of outside option, our sellers do not know F_k and learn from buyer behaviour, prices act as a signal to buyer.

Negative result

Given any low-regret algorithm for the adversarial multi-armed bandit problem, there exists an instance of the strategic multi-armed bandit problem and an o(T) –Nash equilibrium for the arms where the principal earns at most o(T) revenue. [As long as *K* is not too large]

• Arms collude via a market-sharing strategy – they calibrate their actions so that they each get played 1/K of the time, while passing on little utility to the principal.

Positive result

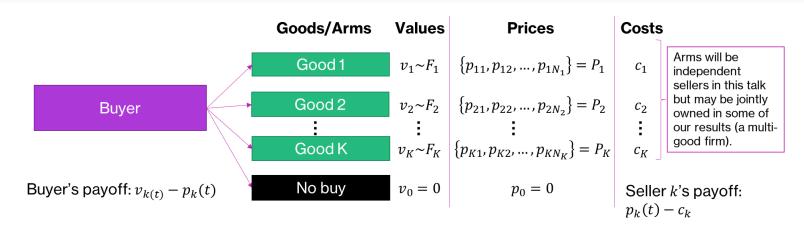
There exists an algorithm for the principal that guarantees revenue at least $\mu^{(2)}T - o(T)$ when the arms are playing according to an o(T)-Nash equilibrium. [As long as μ^* and $\mu^{(2)}$ not too different]

- Three phases: 1) arms report truthfully, 2) the most valuable arm pays the principal the second-largest mean each round, 3) arms are compensated for cooperating in stage 1.
- Defections are punished by never being picked again.

Agenda

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark
- 4. Negative results
- 5. Positive results
- 6. Conclusion and next steps

Pricing bandit regret analysis



- Classic stochastic/adversarial bandit algorithms do not translate directly to this setting, due to prices ('contextual bandit').
- Adapted notion of regret similar to Arora et al. (2012) 'policy regret':
 - If faced with prices $(p_1(t), \dots, p_K(t))$, define least-regret choice as

$$k^{*}(t) = \max_{k} \sum_{s=1}^{t} v_{k,t} - p_{k}(t) \stackrel{\mathbb{E}}{=} \max_{k} \mu_{k} - p_{k}(t)$$

- Price-contextual regret is $PRegret = \sum_{t} (v_{k^*(t),t} p_k(t)) \sum_{t} (v_{k(t),t} p_k(t))$
- Compare to classic notion of Regret = $\max_{i} \sum_{t=1}^{T} v_{k(t),t}$ Rev

Stochastic version

• Suppose that prices were chosen randomly, rather than strategically.

Claim

A modified UCB algorithm results in $O(\log t)$ expected PRegret for the buyer.

Algorithm

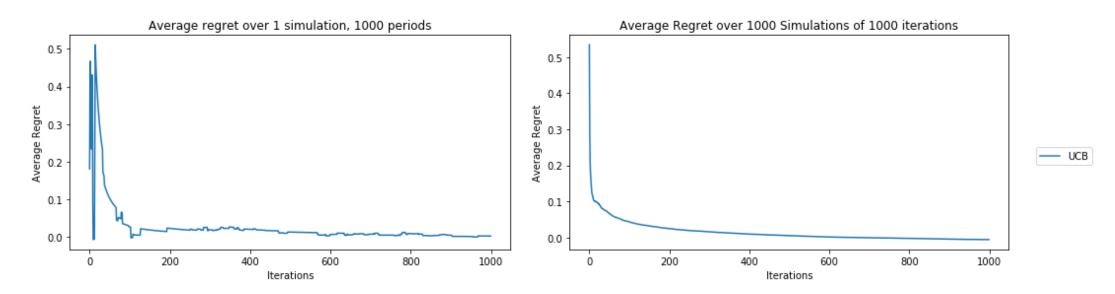
Initialize *k*-vectors $\hat{Q}(t) = (0, 0, ..., 0)$ and N(t) = (1, 1, ..., 1).

At time *t*, if $\max_k \hat{Q}_k(t) + \sqrt{\frac{c \log t}{N_k(t)}} - p_k(t) > 0$, choose k(t) as the argmax of this expression. Otherwise, choose 'not buy'.

Observe utility
$$v_{k(t),t} - p_{k(t),t}$$
 and update $\hat{Q}_k(t) = \frac{N_k(t)\widehat{Q}_k(t) + v_{k(t),t}}{N_k(t) + 1}$, increment $N_k(t)$ by 1.

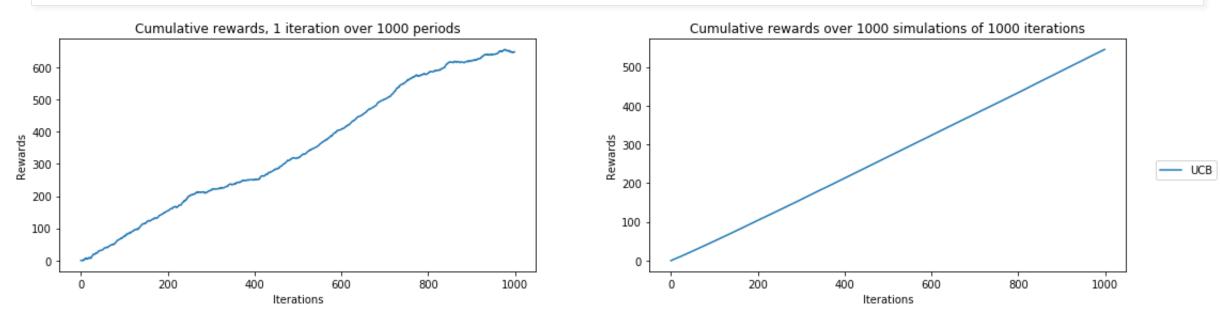
Numerical illustration of modified UCB

- Setting: 3 sellers k = 1,2,3 with $F_1 \sim N(1.2,1), F_2 \sim N(1.6,1), F_3 \sim N(1.4,1)$
- Costs zero, pricing strategy: random on {0.5,0.7,0.9, ..., 1.9}



Buyer identifies values of arm fairly rapidly, and chooses the best one given the price. Regret is o(T).

Numerical illustration of modified UCB (2)



• Rewards are $\Omega(T)$.

Remarks

- Clearly not the only low-regret algorithm.
- We could also use the usual UCB algorithm or any adversarial algorithm where each (arm, price) pair is treated as a separate arm, and the agent is presented a subset of such arms in each round

Agenda

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark

4. Negative results

- 5. Positive results
- 6. Conclusion and next steps

'Negative' result

Claim

Suppose A is a δ -low PRegret algorithm for the stochastic pricing bandit problem (or the adversarial pricing bandit problem with (seller, price) arms), where $\delta < o(T)$.

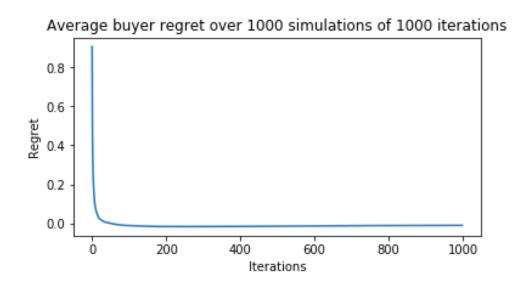
Then in the strategic bandit setting, where the buyer uses algorithm *A*, there exist distributions F_i and an o(T)-approximate Nash equilibrium for the sellers in which the buyer's expected time-averaged utility per round is small (in particular, no larger than the average difference between μ_k and $\max_{p_{kl} \le \mu_k} p_{kl}$) and the sellers extract almost all surplus.

Intuition: single seller

- Because the buyer is using a low-regret algorithm, they should almost always (i.e. $\Omega(T)$ of the time) accept a price $p < \mu$.
- Therefore, the seller can use a low-regret algorithm to explore the price-space and estimate the demand at various prices.
- If the seller chooses a price just below the mean of F_1 , then the buyer will accept this price most of the time, and the expected time-averaged utility for the buyer will be the difference between μ_1 and the price. The payoff for the seller is the price.
- Easily extends to the multi-good monopoly setting.

Illustration: single seller UCB

- Single seller with $F_1 \sim N(1.4,1)$, zero costs, pricing set {0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}
- Seller uses UCB algorithm to determine price.
- Buyer is using the pricing-contextual UCB algorithm (similar results if they use (arm, price) EXP3)



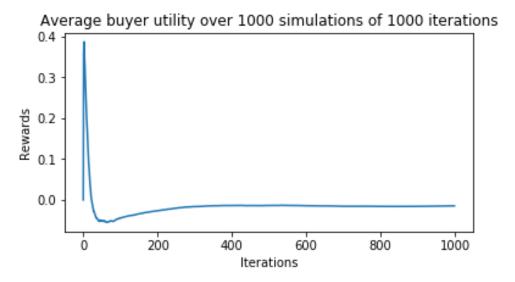
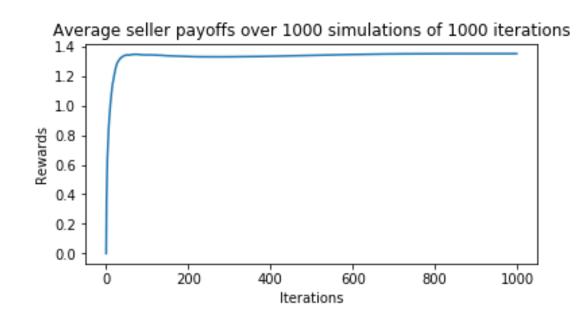


Illustration: single seller UCB (2)

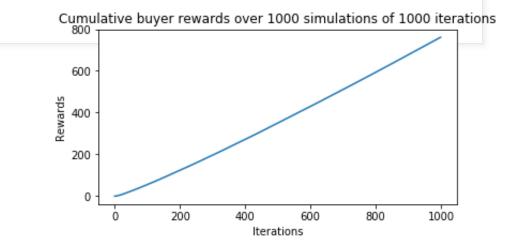


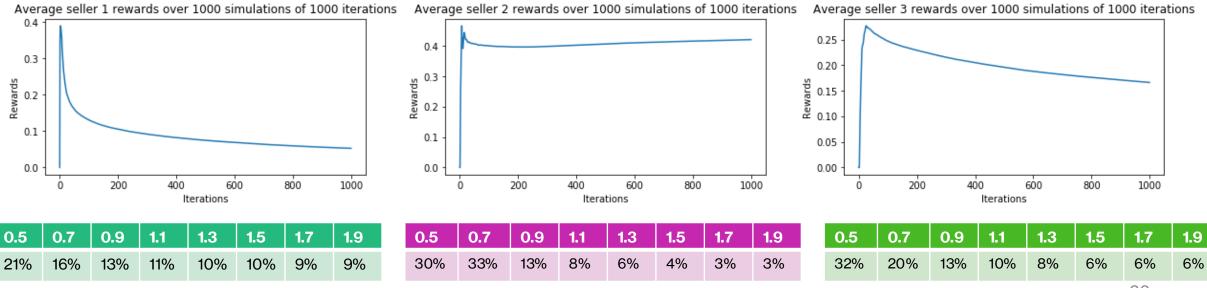
Price	Proportion of time offered by seller	Proportion of time accepted by buyer
0.5	1.35%	85%
0.7	2.27%	95.6%
0.9	4.16%	97.5%
1.1	10.27%	98.9%
1.3	56.20%	99.7%
1.5	21.65%	82.3%
1.7	3.60%	52.2%
1.9	1.31%	25.5%

Proportion of time seller does not buy: 6.4%

Many sellers: independent learning

- Under independent learning by sellers, no-regret learning by the buyer does quite well.
 - Example: $F_1 \sim N(1.2,1), F_2 \sim N(1.6,1), F_3 \sim N(1.4,1)$
 - High-value seller offers lower prices to be chosen more often.
 - c.f. Calvano et al. (2019)





Many sellers: market-sharing strategy

- If sellers know F_i , then the problem is similar to Braverman et al. (2019).
 - As long as means are not too different, seller can calibrate their actions so that they each get played 1/K of the time, while passing on little utility to the principal.
- Without knowledge of F_i, sellers need to estimate **demand** for their goods.
 - Intuitively, because the buyer is using a low-regret strategy, this should not be too difficult for the seller (the buyer need to be choosing optimally $\Omega(t)$ of the time).

Seller joint tâtonnement strategy

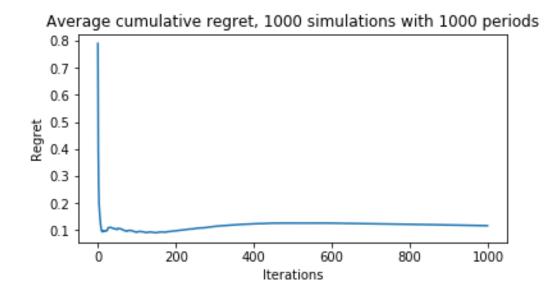
Strategy for seller k

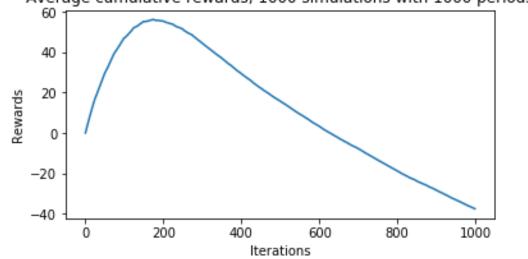
- Given parameters $\tau \sim O(\sqrt{\delta T})$ and β .
- At beginning, each seller offers low price p_k , observes counts N_k of sales by each arm.
- If $t = \tau n$ for n > 1, each seller examines sales data for last τ periods:
 - If over last τ periods, $N_k > \frac{\tau}{\kappa} + \beta$, seller k increments price upwards.
 - If over last τ periods, $N_{\text{no buy}} > \frac{\tau}{\kappa} + \beta$, each seller decrements their price downwards.
- If any seller deviates from the strategy, play the lowest price above cost forever.

Claim: if
$$\frac{p \in P_k: p \le \mu_k}{K}^p > \max_{p \in P_k: p \le \mu^* - (\mu^{(2)} - p_{min})} p$$
, the sets $|P_k|$ are not too big and *K* is not too big, then all sellers playing the above strategy is an $o(T)$ –Nash equilibrium.

Numerical illustration (1)

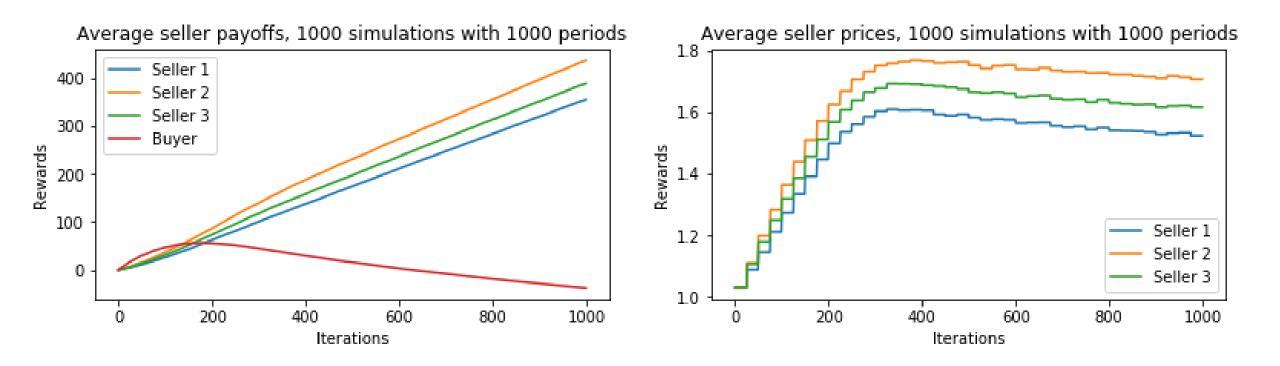
- Three sellers $v_1 \sim N(1.3,1)$, $v_2 \sim N(1.5,1)$, $v_3 \sim N(1.4,1)$, zero costs.
- Buyer using modified UCB algorithm, sellers using joint tâtonnement strategy





Average cumulative rewards, 1000 simulations with 1000 periods

Numerical illustration (2)



Agenda

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark
- 4. Negative results
- 5. Positive results
- 6. Conclusion and next steps

One-sided uncertainty

- **Goal**: to identify an algorithm for the buyer which results in them capturing a large share of the potential gains from trade.
- If sellers know their distribution F_i , then we modify an algorithm from Braverman et al. (2019).

Buyer algorithm

Initialize primitive: confidence level t^* .

- 1. Observe first price vector and set $p^1 = (p_1^1, ..., p_K^1)$. Purchase from a random seller in period 1.
- 2. In subsequent periods:
 - a) Let p^t be the price vector offered by sellers. Purchase from remaining seller with largest 'gains from trade' $p_k^1 p_k^2$, iff they offer a price no larger than $p_k^2 + (p_k^{1(2)} p_k^{2(2)})$.
 - b) Track valuations of purchased goods. If average value \bar{v}_k of goods purchased from seller k ever fails a t-test of the hypothesis that $H_0: \mu_k \ge p_k^1$ given confidence level t^* , then never buy from seller k again.
- 3. In final periods, play each remaining arm sufficiently often that their rewards are *larger* than the expected benefits of misreporting their value in the first period (given t^*).

Seller approximate Nash equilibrium

- In period 1, choose $p_k^1 = \mu_k$ (or the largest one smaller than it in the price set).
- In subsequent period, choose $p_k^2 = c_k$ (or minimum price above this).
- In subsequent periods in phase 2, seller with largest μ_k plays $\mu_k \left(p_k^{1^{(2)}} p_k^{2^{(2)}}\right)$ (or the nearest price below).
 - e.g. if all costs are zero, this is just $\mu^{(1)} \mu^{(2)}$.
- In subsequent periods in phase 2, other sellers play c_k (or minimum price above this).
- In phase 3, all players play the maximum price.

Two-sided learning

- Additional challenge of buyer needing to learn values from experimentation, seller needing to infer valuations from buyer behavior.
- Here we propose an algorithm for the buyer to capture most of the surplus that only works if there is at least two sellers.

Buyer algorithm

Initialize primitive: experimentation time $\tau = O(1)$.

- 1. Buyer commits to purchase from each arm a fixed number τ of times and forms an estimate of the mean value of the arm $\bar{x}_{k,t}$.
- 2. In subsequent periods:
 - a) Let p^t be the price vector offered by sellers. Purchase from remaining seller that offers price which maximizes $\bar{x}_{k,t} p_k^t$, as long as this value is larger than zero (continuing to track mean value of arms pulled).
 - b) If any seller **ever** raises their price, never purchase from that seller again.

Seller approximate Nash equilibrium

- In first $K\tau$ periods, always play highest price.
- In subsequent periods, play highest price.
 - If not chosen in some period, decrement price.

Agenda

- 1. Introduce model
- 2. Literature review
 - a) Review of multi-armed bandit literature
 - b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
- 3. Non-strategic benchmark
- 4. Negative results
- 5. Positive results
- 6. Conclusion and next steps

Conclusion and next steps

Conclusions

- Strategic sellers can take advantage of buyers using bandit regret-minimization algorithms to learn values.
- Buyers can select algorithms to earn a large share of the surplus by exploiting competition between sellers.

Next steps

- More to explore in this specific setting: Is there an algorithm for the buyer to capture surplus in single seller case? What about algorithms for the seller? Multiple buyers? A mixed population of strategic and non-strategic buyers? Bayesian strategic bandits?
- More general results on strategic bandits:
 - Other settings, e.g. repeated matching setting of Das and Kamenica (2005)
 - General theorems, characterization of algorithms.
 - Algorithms as an equilibrium selection? Robustness to Knightian uncertainty.