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Introduction

• We study a problem of trade in a setting with one buyer, many sellers and many 

goods, repeated interaction and two-sided uncertainty about valuations.

• Buyers and sellers engage in experimentation and seek to learn value distributions and 

costs, and exploit information learned.

• Interpret as a ‘strategic armed bandit’ (as in Braverman et al. 2019).

• CS perspective: we seek algorithms for the buyer which provide payoff 

guarantees for all possible value distributions / cost profiles.

• ‘Negative’ result: classical bandit regret-minimizing algorithms may be exploited by 

sellers and result in very low payoffs for the buyer.

• ‘Positive’ result: we describe an algorithm for buyers with good payoff guarantees 

given optimal response by sellers.
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Information structures:
• Mostly interested in two-sided uncertainty: neither buyer nor seller knows distributions 𝐹𝑖.
• Will also use one-sided uncertainty (seller knows 𝐹𝑖) as a benchmark.
• Will usually assume all sellers see which arm the buyer chooses.

Buyer

Good 1

Good 2

Good K

…

Buyer’s payoff: 𝑣𝑘(𝑡) − 𝑝𝑘(𝑡) No buy

𝑣1~𝐹1

𝑣2~𝐹2

𝑣𝐾~𝐹𝐾

𝑣0 = 0

𝑝11, 𝑝12, … , 𝑝1𝑁1
= 𝑃1

𝑝21, 𝑝22, … , 𝑝2𝑁2
= 𝑃2

𝑝𝐾1, 𝑝𝐾2, … , 𝑝𝐾𝑁𝐾
= 𝑃𝐾

𝑝0 = 0

𝑐1

𝑐2

𝑐𝐾

Arms will be 
independent 
sellers in this talk 
but may be jointly 
owned in some of 
our results (a multi-
good firm).

Prices CostsGoods/Arms Values

… ……

Round 𝒕+1
𝑻 rounds

Round 𝒕:
Sellers announce prices 𝑝𝑘 𝑡

observed by everyone.

Buyer chooses one good 𝑘 𝑡
to purchase (or no buy).

𝑣𝑘  is realized for arm 𝑘 𝑡 ,
observed only by buyer.

Buyer receives 𝑣𝑘 − 𝑝𝑘 𝑡 .
Seller receives 𝑝𝑘 𝑡 − 𝑐𝑘.

Seller 𝑘’s payoff: 
𝑝𝑘 𝑡 − 𝑐𝑘

Means: 𝜇𝑘 < ∞
Finite variance

Model

Timing



Solution concept

• Typical approach in economics: Markov perfect equilibrium

• Not well-defined under ‘Knightian’ uncertainty about valuation distributions.

• Difficult! Likely non-unique, complicated.

• We take a CS-inspired approach

• Goal: An algorithm for the buyer with good payoff guarantees, assuming that 
sellers are behaving ‘reasonably’.

• The algorithm should be robust to the distributions 𝐹1, … , 𝐹𝐾 and costs 𝑐1, … , 𝑐𝐾.

• The algorithm will usually be random, in which case we seek payoff guarantees with high 
probability or in expectation.

• The payoff guarantees might be relative to the maximal possible payoffs (‘regret’).

• Sellers will be playing dominant strategies / approximate Nash equilibria / 
minimizing their own regret.
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Multi-armed bandits: review
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• DM chooses one of 𝐾 arms each round, over 𝑇 rounds.
• On choosing arm 𝑘(𝑡), DM receives 𝑣𝑘 𝑡 ,𝑡. 

• DM seeks to maximize Rev = σ𝑡=1
𝑇 𝑣𝑘 𝑡 ,𝑡.

• Alternatively, DM minimizes Regret = max
𝑘

σ𝑡=1
𝑇 𝑣𝑘,𝑡 − Rev

DM

Arm 1

Arm 2

Arm K

…

Classic bandit varieties

• Stochastic bandit: 𝑣𝑘,𝑡~𝐹𝑘 iid
• Bayesian bandit: learner assumes distribution 𝑣𝑘,𝑡~𝐹𝑘(. |𝜃) with prior 𝜋(𝜃) over 𝜃.
• Adversarial bandit: 𝑣𝑘,𝑡 is chosen by some (possibly adaptive) adversary.



Bandit algorithms
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• Typically, choosing 
randomly gives Θ(𝑇) 
regret.

• We are interested in 
algorithms that result 
in sublinear regret. 

• Exploration vs 
exploitation trade-off

Stochastic Bandit
𝑣𝑘,𝑡~𝐹𝑘  

UCB (Upper Confidence Bound)
• Choose arm at time 𝑡 which maximizes 

Sample mean of observed rewards +
𝑐 log 𝑡

Number of times pulled

• Expected regret is 𝑂(log 𝑇) with constant depending on 𝜇∗ − 𝜇(2)

Bayesian Bandit
𝑣𝑘,𝑡~𝐹𝑘 ⋅ 𝜃

𝜃~𝜋(𝜃).

• Gittins Index: optimal for 𝑇 → ∞
• Probability Matching / Thompson sampling

Adversarial 
Bandit

EXP3 
• Given: 𝛾 ∈ [0,1]. Initialize: 𝑤𝑘 𝑡 = 1. 

• In each round, choose 𝑘 with probability 𝑝𝑘 = 1 − 𝛾
𝑤𝑘 𝑡

σ𝑤𝑗(𝑡)
+

𝛾

𝐾
.

• Update weight of chosen arm as 𝑤𝑘 𝑡 + 1 = 𝑤𝑘 𝑡 exp 𝛾
𝑣𝑘,𝑡

𝐾𝑝𝑘
.

• Expected regret is 𝑂( 𝑇𝐾 log 𝐾)



Strategic-armed bandits

• 𝑤𝑘,𝑡~𝐹𝑘  is drawn, and arm 𝑘 (if chosen) determines how much of 𝑤𝑘,𝑡 to pass on, 𝑣𝑘,𝑡 < 𝑤𝑘,𝑡 .

• Differences from our setting: existence of outside option, our sellers do not know 𝐹𝑘  and learn from 
buyer behaviour, prices act as a signal to buyer.
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Braverman, Mao, Schneider and Weinberg (2019) 

Given any low-regret algorithm for the adversarial multi-armed bandit problem, there exists an 
instance of the strategic multi-armed bandit problem and an 𝑜 𝑇 −Nash equilibrium for the arms 
where the principal earns at most 𝑜(𝑇) revenue. [As long as 𝐾 is not too large]

Negative result

• Arms collude via a market-sharing strategy – they calibrate their actions so that they each get played 1/𝐾 of 
the time, while passing on little utility to the principal.

There exists an algorithm for the principal that guarantees revenue at least 𝜇(2)𝑇 − 𝑜(𝑇) when the 
arms are playing according to an 𝑜 𝑇 -Nash equilibrium. [As long as 𝜇∗ and 𝜇(2) not too different]

Positive result

• Three phases: 1) arms report truthfully, 2) the most valuable arm pays the principal the second-largest mean 
each round, 3) arms are compensated for cooperating in stage 1.

• Defections are punished by never being picked again.
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Pricing bandit regret analysis
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• Classic stochastic/adversarial bandit algorithms do not translate directly to this setting, 
due to prices (‘contextual bandit’).

• Adapted notion of regret similar to Arora et al. (2012) ‘policy regret’:
• If faced with prices (𝑝1(𝑡), … , 𝑝𝐾(𝑡)), define least-regret choice as

𝑘∗ 𝑡 = max
𝑘

෍

𝑠=1

𝑡

𝑣𝑘,𝑡 − 𝑝𝑘(𝑡) =
𝔼

max
𝑘

𝜇𝑘 − 𝑝𝑘(𝑡)

• Price-contextual regret is PRegret = σ𝑡(𝑣𝑘∗ 𝑡 ,𝑡 − 𝑝𝑘 𝑡 ) − σ𝑡(𝑣𝑘 𝑡 ,𝑡 − 𝑝𝑘 𝑡 )

• Compare to classic notion of Regret = max
𝑖

σ𝑡=1
𝑇 𝑣𝑘 𝑡 ,𝑡 − Rev



Stochastic version

• Suppose that prices were chosen randomly, rather than strategically.
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A modified UCB algorithm results in 𝑂(log 𝑡) expected PRegret for the buyer.

Claim

Algorithm

Initialize 𝑘-vectors ෠𝑄 𝑡 = (0,0, … , 0) and 𝑁 𝑡 = (1,1, … . , 1).

At time 𝑡, if maxk
෠𝑄𝑘 𝑡 +

𝑐 log 𝑡

𝑁𝑘 𝑡
− 𝑝𝑘(𝑡) > 0, choose 𝑘(𝑡) as the argmax of this expression.

Otherwise, choose ‘not buy’.

Observe utility 𝑣𝑘 𝑡 ,𝑡 − 𝑝𝑘 𝑡 ,𝑡 and update ෠𝑄𝑘 𝑡 =
𝑁𝑘 𝑡 ෢𝑄𝑘 𝑡 +𝑣𝑘 𝑡 ,𝑡 

𝑁𝑘(𝑡)+1
, increment 𝑁𝑘(𝑡) by 1.



Numerical illustration of modified UCB

• Setting: 3 sellers 𝑘 = 1,2,3 with 𝐹1~𝑁(1.2,1), 𝐹2~𝑁(1.6,1), 𝐹3~𝑁 1.4,1

• Costs zero, pricing strategy: random on {0.5,0.7,0.9, … , 1.9}
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Buyer identifies values of arm fairly rapidly, and chooses the best one given the price. 
Regret is 𝑜(𝑇).
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Numerical illustration of modified UCB (2)

• Rewards are Ω(𝑇).

Remarks
• Clearly not the only low-regret algorithm. 
• We could also use the usual UCB algorithm or any adversarial algorithm where each 

(arm, price) pair is treated as a separate arm, and the agent is presented a subset of such 
arms in each round
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‘Negative’ result
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Claim

Suppose A is a 𝛿-low PRegret algorithm for the stochastic pricing bandit problem (or the 

adversarial pricing bandit problem with (seller, price) arms), where 𝛿 < 𝑜 𝑇 .

Then in the strategic bandit setting, where the buyer uses algorithm 𝐴, there exist 

distributions 𝐹𝑖 and an 𝑜(𝑇)-approximate Nash equilibrium for the sellers in which the buyer’s 

expected time-averaged utility per round is small (in particular, no larger than the average 

difference between 𝜇𝑘 and max
𝑝𝑘𝑙≤𝜇𝑘

𝑝𝑘𝑙) and the sellers extract almost all surplus.



Intuition: single seller

• Because the buyer is using a low-regret algorithm, they should almost always (i.e. 

Ω(𝑇) of the time) accept a price 𝑝 < 𝜇.

• Therefore, the seller can use a low-regret algorithm to explore the price-space and 

estimate the demand at various prices.

• If the seller chooses a price just below the mean of 𝐹1, then the buyer will accept 

this price most of the time, and the expected time-averaged utility for the buyer will 

be the difference between 𝜇1 and the price. The payoff for the seller is the price.

• Easily extends to the multi-good monopoly setting.
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Illustration: single seller UCB
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• Single seller with 𝐹1~𝑁(1.4,1), zero costs, pricing set 0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9

• Seller uses UCB algorithm to determine price.

• Buyer is using the pricing-contextual UCB algorithm (similar results if they use (𝑎𝑟𝑚, 𝑝𝑟𝑖𝑐𝑒) EXP3)



Illustration: single seller UCB (2)
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Price Proportion of 
time offered by 
seller

Proportion of 
time accepted 
by buyer

0.5 1.35% 85%

0.7 2.27% 95.6%

0.9 4.16% 97.5%

1.1 10.27% 98.9%

1.3 56.20% 99.7%

1.5 21.65% 82.3%

1.7 3.60% 52.2%

1.9 1.31% 25.5%

Proportion of time seller does not buy: 6.4%



Many sellers: independent learning

• Under independent learning by sellers, no-regret 

learning by the buyer does quite well.

• Example: 𝐹1~𝑁 1.2,1 , 𝐹2~𝑁 1.6,1 , 𝐹3~𝑁(1.4,1)

• High-value seller offers lower prices to be chosen more 

often.

• c.f. Calvano et al. (2019)
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0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

21% 16% 13% 11% 10% 10% 9% 9%

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

30% 33% 13% 8% 6% 4% 3% 3%

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

32% 20% 13% 10% 8% 6% 6% 6%



Many sellers: market-sharing strategy

• If sellers know 𝐹𝑖, then the problem is similar to Braverman et al. (2019).

• As long as means are not too different, seller can calibrate their actions so that they 

each get played 1/𝐾 of the time, while passing on little utility to the principal.

• Without knowledge of 𝐹𝑖, sellers need to estimate demand for their goods.

• Intuitively, because the buyer is using a low-regret strategy, this should not be too 

difficult for the seller (the buyer need to be choosing optimally Ω 𝑡  of the time).
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Seller joint tâtonnement strategy
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Strategy for seller 𝒌

• Given parameters 𝜏~𝑂 𝛿𝑇  and 𝛽.

• At beginning, each seller offers low price 𝑝𝑘, observes counts 𝑁𝑘 of sales by each arm.

• If 𝑡 = 𝜏𝑛 for 𝑛 > 1, each seller examines sales data for last 𝜏 periods:

• If over last 𝜏  periods, 𝑁𝑘 >
𝜏

𝐾
+ 𝛽, seller 𝑘 increments price upwards.

• If over last 𝜏 periods, 𝑁no buy >
𝜏

𝐾
+ 𝛽, each seller decrements their price downwards.

• If any seller deviates from the strategy, play the lowest price above cost forever.

Claim: if 
max

𝑝∈𝑃𝑘:𝑝≤𝜇𝑘
𝑝

𝐾
> max

𝑝∈𝑃𝑘:𝑝≤𝜇∗−(𝜇 2 −𝑝𝑚𝑖𝑛)
𝑝, the sets |𝑃𝑘| are not too big and 𝐾 is not too big, then 

all sellers playing the above strategy is an 𝑜 𝑇 −Nash equilibrium.



Numerical illustration (1)

• Three sellers 𝑣1~𝑁(1.3,1), 𝑣2~𝑁(1.5,1), 𝑣3~𝑁 1.4,1 , zero costs.

• Buyer using modified UCB algorithm, sellers using joint tâtonnement strategy
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Numerical illustration (2)
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One-sided uncertainty

• Goal: to identify an algorithm for the buyer which results in them capturing a large share of the 

potential gains from trade.

• If sellers know their distribution 𝐹𝑖, then we modify an algorithm from Braverman et al. (2019).

26

Buyer algorithm
Initialize primitive: confidence level 𝑡∗.
1. Observe first price vector and set 𝑝1 = (𝑝1

1, … , 𝑝𝐾
1 ). Purchase from 

a random seller in period 1.
2. In subsequent periods:

a) Let 𝑝𝑡 be the price vector offered by sellers. Purchase from 
remaining seller with largest ‘gains from trade’ 𝑝𝑘

1 − 𝑝𝑘
2, iff 

they offer a price no larger than 𝑝𝑘
2 + 𝑝𝑘

1 2
− 𝑝𝑘

2 2
.

b) Track valuations of purchased goods. If average value ҧ𝑣𝑘 of 
goods purchased from seller 𝑘 ever fails a 𝑡 −test of the 
hypothesis that 𝐻0: 𝜇𝑘 ≥ 𝑝𝑘

1 given confidence level 𝑡∗, then 
never buy from seller 𝑘 again.

3. In final periods, play each remaining arm sufficiently often that 
their rewards are larger than the expected benefits of 
misreporting their value in the first period (given 𝑡∗).

Seller approximate Nash equilibrium
• In period 1, choose 𝑝𝑘

1 = 𝜇𝑘 (or the largest one smaller 
than it in the price set).

• In subsequent period, choose 𝑝𝑘
2 = 𝑐𝑘 (or minimum 

price above this).
• In subsequent periods in phase 2, seller with largest 

𝜇𝑘 plays 𝜇𝑘 − 𝑝𝑘
1 2

− 𝑝𝑘
2 2

 (or the nearest price 

below).

• e.g. if all costs are zero, this is just 𝜇(1) − 𝜇 2 .
• In subsequent periods in phase 2, other sellers play 𝑐𝑘 

(or minimum price above this).
• In phase 3, all players play the maximum price.



Two-sided learning

• Additional challenge of buyer needing to learn values from experimentation, seller needing to 
infer valuations from buyer behavior.

• Here we propose an algorithm for the buyer to capture most of the surplus that only works if 
there is at least two sellers.

27

Buyer algorithm
Initialize primitive: experimentation time 𝜏 = 𝑂(1).

1. Buyer commits to purchase from each arm a fixed number 𝜏 of 
times and forms an estimate of the mean value of the arm ҧ𝑥𝑘,𝑡.

2. In subsequent periods:
a) Let 𝑝𝑡 be the price vector offered by sellers. Purchase from 

remaining seller that offers price which maximizes ҧ𝑥𝑘,𝑡 − 𝑝𝑘
𝑡 , 

as long as this value is larger than zero (continuing to track 
mean value of arms pulled).

b) If any seller ever raises their price, never purchase from that 
seller again.

Seller approximate Nash equilibrium
• In first 𝐾𝜏 periods, always play highest price.

• In subsequent periods, play highest price.
• If not chosen in some period, decrement price.
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Conclusion and next steps

Conclusions

• Strategic sellers can take advantage of buyers using bandit regret-minimization algorithms to 

learn values.

• Buyers can select algorithms to earn a large share of the surplus by exploiting competition 

between sellers.

Next steps

• More to explore in this specific setting: Is there an algorithm for the buyer to capture surplus in 

single seller case? What about algorithms for the seller? Multiple buyers? A mixed population of 

strategic and non-strategic buyers? Bayesian strategic bandits?

• More general results on strategic bandits:

• Other settings, e.g. repeated matching setting of Das and Kamenica (2005)

• General theorems, characterization of algorithms.

• Algorithms as an equilibrium selection? Robustness to Knightian uncertainty.
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