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Introduction

In many important markets, items are not allocated at once but instead arrive over time.

• Public housing units (Arnosti and Shi 2019, Cook and Li (202x))

• Organs (Roth et al. (2004), Akbarpour et al. (2020), Ashlagi et al. (2021)

• Uber drivers waiting for jobs (Castro et al. 2021)

• Centralized allocation of schoolteachers (Combe, Tercieux and Terrier 2022)

Common features: queues, costs of waiting, fixed or constrained prices

Previous work: optimal one-off queue design, value of thickness

This project: focused on repeated allocation, optimal dynamic contracting
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Motivating examples

Ride-sharing apps

• Jobs appear randomly over time.

• Net of payments, Castro et al.

(2021) show substantial

heterogeneity in values of jobs.

• Typically allocated FCFS.
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Motivating examples

Allocation of school teachers

• Teachers allocated centrally.

• Jobs appear over time: retirement of

teachers, new demand.

• Heterogeneity in value: locational

preferences and difficult schools

• Regulatory limits on salary differential.

• “Transfer points”: teachers accrue priority

while matched to less desirable schools.

More details
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This paper

Key question

What is the optimal design of dynamic incentives in matching markets with fixed transfers?

I introduce a model of repeated matching with a fixed population of agents and a

period-by-period participation constraint.

Key assumptions: values are homogeneous and observable, non-stochastic agent arrival

Key results:

• Principal incentivizes undesirable allocations using promises of improved future allocations.

• Principal’s value function is Schur-concave in promised utility vector.

→ Loyalty: agents with worse historical allocations prioritized for better allocations today.
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Roadmap

Single agent model

Single agent optimal contract

Multiple agents

Conclusion and next steps



Model

Agents and timing

One agent and a principal.

Time is discrete, t ∈ N.

In each period:

• An indivisible item arrives, with value is drawn i.i.d. from common knowledge F with

support V = [v, v] containing zero.

• The principal and agent both observe the item’s value.

• Principal offers the item to the agent with probability x(v) ∈ [0, 1].

• Agent accepts the offered item with probability y(v) ∈ [0, 1].

• Unallocated / unaccepted items disappear.
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Model

Preferences

vt is the value of the item arriving in period t.

yt is agent i’s acceptance decision at period t

δA is agent’s discount factor, δP is principal’s discount factor.

Agent utility

UA = (1 − δA)
∞

∑
t=0

δt
Avtyt.

Principal utility

UP = (1 − δP)
∞

∑
t=0

δt
Pyt.
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Design problem

Principal chooses a sequence of history-dependent allocation rules.

xt : V ×Ht → [0, 1].

For now, assume the principal has full commitment.

Agent chooses probability of acceptance conditional on offer value

yit : V ×Ht → [0, 1].

Lemma

There is an optimal mechanism with no randomization.
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Design problem

Recursive formulation

Recall by the Bellman (1952) Principle of Optimality, it suffices for the policy to depend on

history only through the promised utility to the agent, u.

As a function of u and the realization of the item’s value, the principal determines an

allocation rule x(v; u) and a plan for new promised utilities u′(v; u).

Since promises must be realized by a stream of future allocations,

u ∈
[

0,
∫ v

0
v dF(v)

]
:= U .
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Design problem

Recursive reformulation via Bellman (1952)

The principal solves:

Φ(u) = max
x(v;u),u′(v;u)

Ev∼F
[
(1 − δP)x(v; u) + δPΦ

(
u′(v; u)

)]
subject to
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Roadmap

Single agent model

Single agent optimal contract

Multiple agents

Conclusion and next steps



Value function properties

Theorem

There is a unique value function Φ(·) solving the principal’s problem, which is monotone

decreasing, concave, continuous and semidifferentiable.
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Value function properties

Proof idea

Φ(u) = max
x(v;u),u′(v;u)

Ev∼F
[
(1 − δP)x(v; u) + δPΦ

(
u′(v; u)

)]
subject to

Ev∼F
[
(1 − δA)vx(v; u) + δAu′(v; u)

]
≥ u, (PK)

(1 − δA)vx(v; u) + δAu′(v; u) ≥ 0, for each v, (PC)

with x(v; u) ∈ {0, 1} and u′(v; u) ∈ U .

• Blackwell’s conditions: RHS operator is a contraction.

• Endomorphism on space of concave functions:

→ For uα = αu + (1 − α)u∗, feasible to assign using x(v; u), u′(v; u) w.p. α and x(v; u∗),

u′(v; u∗) w.p. 1 − α ⇒ Jensen’s inequality.

→ Banach fixed point theorem ⇒ concavity.

• Monotonicity: set of feasible policies is decreasing in u.

• Continuity and semidifferentiability: interior continuity and semidifferentiability follow from

concavity, continuity at end points from a limit argument.
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Characterizing the optimal allocation

Cutoff policy

Lemma

There is an optimal policy in which

x(v; u) =

0 if v < γ(u)

1 if v ≥ γ(u),

for some γ : U → V .

Intuition: If otherwise, the agent would prefer to be allocated the same proportion of goods

but with higher values, and the principal is indifferent (and may reduce some u′).
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Characterizing the optimal allocation

Promises

Suppose we fix cutoff policy γ(u). We now determine the optimal promise policy u′(v; u).

At each v ≥ γ(u), (PC) requires u′(v; u) ≥ −(1−δA)
δA

v.

Averaged over all v ∈ V , (PK) requires

Ev∼F[u′(v; u)] ≥
u − (1 − δA)

∫ v
γ(u) vdF(v)

δA
.

The concavity of Φ(·) implies it is optimal to attain the average on the right in the least

spread way, while respecting (PC).
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Characterizing the optimal allocation

Promises

First possibility: no participation constraints bind, constant u′.

u′(v; u)

vγ(u)

u−(1−δA)
∫ v

γ(u) vdF(v)
δA
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Characterizing the optimal allocation

Promises

Second possibility: an interval of binding participation constraints and constant u′ elsewhere.

u′(v; u)

vγ(u)

u−(1−δA)
∫ v

γ(u) vdF(v)
δA
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Optimal allocations depend on δA vs δP

Principal chooses cutoffs trading off (using δP) the probability of allocating today and the

effect on future promises (which depend on δA).

Theorem (Informal)

The optimal allocation entails a cutoff policy γ(·) nondecreasing with γ(maxU ) = 0.

Whenever (PK) binds:

• When δP > δA, u′
+ < u. The principal “works off” promises over time, and the cutoff

(thus expected value of allocated items) fluctuates (inversely) with promises.

• When δP = δA, u′
+ = u. Eventually, the allocation rule is deterministic with cutoff < 0.

• When δP < δA, u′
+ > u. Eventually only good items are allocated.
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Example - Patient principal

v ∼ Unif[−1, 1], U =
[
0, 1

4

]
, δP = 0.9 > 0.8 = δA
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Principal's value as a function of promised utility
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Example - Patient Principal - Dynamics

v ∼ Unif[−1, 1], U =
[
0, 1
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]
, δP = 0.9 > 0.8 = δA
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Example - Equally patient principal and agent
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Example - Equally Patient Principal and Agent- Dynamics
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Example - Impatient Principal
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Example - Impatient Principal - Dynamics

v ∼ Unif[−1, 1], U =
[
0, 1

4

]
, δP = 0.7 < 0.8 = δA
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Cutoff over simulation
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Intuition of proof

Maximize Lagrangian for

max
x(v;u),u′(v;u)

Ev∼F
[
(1 − δP)x(v; u) + δPΦ

(
u′(v; u)

)]
subject to

Ev∼F
[
(1 − δA)vx(v; u) + δAu′(v; u)

]
≥ u, λ(u) (PK)

(1 − δA)vx(v; u) + δAu′(v; u) ≥ 0, for each v. µ(v; u) (PC)

First-order conditions:

• x(v; u) = 1 iff v > − 1−δP
1−δA

1
λ(u)+µ(v;u) .

• Φ′(u′(v; u)) = −δA
δP

(λ(u) + µ(v; u)).

Envelope theorem: Φ′(u) = −λ(u) =⇒ where v > 0, Φ′(u′(v; u)) = δA
δP

Φ′(u).
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Roadmap

Single agent model

Single agent optimal contract

Multiple agents

Conclusion and next steps



Multiple Agent Model

Agents and timing

• Now N agents and N indivisible items

in each period.

• Principal now offers a matching

M ∈ M(v) of items and agents.

• U is now a symmetric polytope in RN
+.

• Full commitment no longer necessary

for results.

Example, suppose v ∼ Unif[−1, 2]

4
27

28
27

28
27

4
27

No commitment

Full commitment
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Value function properties

Schur-concavity

Existence, uniqueness, monotonicity and concavity follow as previously.

Majorization preorder: u ≺ u′ if (after ordering components of u and u′ in descending order),

we have that for all k,
k

∑
i=1

ui ≤
k

∑
i=1

u′
i, and

N

∑
i=1

ui =
N

∑
i=1

u′
i.

e.g.
( 1

n , . . . , 1
n

)
≺

( 1
n−1 , . . . , 1

n−1 , 0
)
≺ · · · ≺

( 1
2 , 1

2 , 0, . . . , 0
)
≺ (1, 0, . . . , 0).

Symmetry + concavity ⇒ Schur-concavity: Φ is decreasing in the majorization preorder.

25 / 29



Value function properties

Schur-concavity

Existence, uniqueness, monotonicity and concavity follow as previously.

Majorization preorder: u ≺ u′ if (after ordering components of u and u′ in descending order),

we have that for all k,
k

∑
i=1

ui ≤
k

∑
i=1

u′
i, and

N

∑
i=1

ui =
N

∑
i=1

u′
i.

e.g.
( 1

n , . . . , 1
n

)
≺

( 1
n−1 , . . . , 1

n−1 , 0
)
≺ · · · ≺

( 1
2 , 1

2 , 0, . . . , 0
)
≺ (1, 0, . . . , 0).

Symmetry + concavity ⇒ Schur-concavity: Φ is decreasing in the majorization preorder.

25 / 29



Value function properties

Schur-concavity

Existence, uniqueness, monotonicity and concavity follow as previously.

Majorization preorder: u ≺ u′ if (after ordering components of u and u′ in descending order),

we have that for all k,
k

∑
i=1

ui ≤
k

∑
i=1

u′
i, and

N

∑
i=1

ui =
N

∑
i=1

u′
i.

e.g.
( 1

n , . . . , 1
n

)
≺

( 1
n−1 , . . . , 1

n−1 , 0
)
≺ · · · ≺

( 1
2 , 1

2 , 0, . . . , 0
)
≺ (1, 0, . . . , 0).

Symmetry + concavity ⇒ Schur-concavity: Φ is decreasing in the majorization preorder.

25 / 29



Equalization of promised utilities

Schur-concavity of Φ implies that the principal prefers equalization of promised utilities among

agents.

u1

u2

u1 = u2
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Implication for design: “Loyalty”

Theorem

In the optimal mechanism, the matching of items in any period is assortative in u and v.

That is, those agents with the highest promised utility ( ⇐⇒ worst historical allocations)

receive the best arriving items in any period.

Intuition: allocating better items to a worse-off agent slackens the associated promise-keeping

constraint and allows the principal to equalize promised utilities in the Schur-concave objective.

27 / 29



Proof idea

Maximize Lagrangian for

max
M(v;u)∈M(v),u′(v;u)∈U

Ev∼F
[
(1 − δP)|M(v; u)|+ δPΦ

(
u′(v; u)

)]
subject to

Ev∼F

[
(1 − δA)vM

i (v; u) + δAu′
i(v; u)

]
≥ ui, for each i, λi(u) (PK)

(1 − δA)vM
i (v; u) + δAu′

i(v; u) ≥ 0, for each i and v. µi(v; u) (PC)

Optimality for M and envelope theorem:

M(v; u) solves max
M∈M(v)

(1 − δP)|M|+ (1 − δA)λ(u) · vM
i + (1 − δA)µ(v; u) · vM

i

∇Φ(u) = −λ(u).
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Proof idea

For simplicity, consider v ≫ 0, so that µ(v; u) = 0.

Then

M(v; u) solves max
M∈M(v)

(1 − δP)|M| − (1 − δA)∇Φ(u) · vM
i .

Schur-Ostrowski criterion for Schur-concave functions:

(
ui − uj

) ( ∂Φ
∂ui

− ∂Φ
∂uj

)
≤ 0, i.e. ui < uj =⇒

∂Φ
∂ui

<
∂Φ
∂uj

(≤ 0).

So larger vM
i should be paired with larger − ∂Φ

∂ui
=⇒ assortativity.
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Conclusion and next steps

I introduce a simple model of dynamic allocation and matching over time.

In the optimal contract, the principal promises better future allocations to incentivize the

agent to accept disliked allocations today.

The principal rewards “loyalty” by prioritizing agents with worse historical allocations for

better allocations today.

Implication: Suggests that the first-come-first-serve mechanism used by many rideshare

platforms may be suboptimal.

Next steps: fuller characterization and simulation of N ≥ 2, stochastic arrival of agents

Speculative next steps: price benchmark, unobservable heterogeneity in values
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Thank you!



Matching teachers in Queensland

• For each year of teaching, a

teacher earns ‘transfer points’.

• Less desirable schools earn more

transfer points.

• At start of school year, a teacher

may apply to vacant jobs in

schools.

• Priority given to teachers with

highest transfer points balance.

Back to Main
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