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Abstract

We develop a model of redistribution where a social planner, seeking to maximize weighted
total surplus, can subsidize consumers who participate in a private market. We identify
when subsidies can strictly improve upon the laissez-faire outcome, which depends on the
correlation between consumers’ demand and need. We characterize the optimal nonlinear
subsidy by quantifying when—and for which units of the good—the social planner uses a full
subsidy (i.e., free provision) rather than a partial subsidy or no subsidy. Our findings provide
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demand and need are positively correlated.
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1 Introduction

Suppose a social planner wishes to redistribute in a market by offering subsidies to consumers.
Subsidies can be nonlinear: the social planner can adjust the marginal subsidy for each additional
unit of the good consumed. Subsidies are also costly. When should the social planner offer any
subsidy at all? If she chooses to offer a subsidy, how should it be designed?

These questions are not merely theoretical. Globally, an estimated 1.5 billion people benefit
from food subsidies (Alderman, Gentilini and Yemtsov, 2017). In both developed and developing
countries, government agencies subsidize a wide range of goods, including child care, education,
energy, fuel, health care, and transportation. These subsidies are often nonlinear by design. For
instance, food stamp programs—such as the Supplemental Nutrition Assistance Program (SNAP)
in the United States—provide a full subsidy for a fixed monetary amount of food, but zero subsidy
thereafter.

In this paper, we study the problem of optimal redistribution through subsidies. In our model,
the social planner can subsidize consumption by reimbursing some or all of the private market
price for different quantities of the good, while consumers can always purchase additional units
at the private market price. Drawing on recent literature on redistributive mechanism design,
we model the social planner’s redistributive objective by assigning heterogeneous welfare weights
to consumers. To focus on in-kind redistribution, we exclude lump-sum cash transfers within
the mechanism, instead modeling the social planner’s opportunity cost of spending (which may
depend on the availability of lump-sum transfers outside the mechanism) by assigning a welfare
weight to subsidy expenditures.

The presence of the private market constrains the social planner’s ability to redistribute. The
social planner would like to screen consumers by setting higher marginal prices for consumption
levels chosen by low-need consumers. However, because consumers can always access the private
market, the marginal cost of any unit of consumption cannot exceed the private market price (or
equivalently, the total subsidy received by consumers must be increasing in the quantity
consumed), limiting the extent of redistribution from low-need to high-need consumers. Using
mechanism design—and particularly the taxation principle (Guesnerie, 1981)—we reformulate
this constraint, showing it to be equivalent to requiring that each consumer’s total consumption
exceeds his laissez-faire consumption level.

In our first main result, Theorem 1, we identify a sufficient statistic that determines whether
the social planner strictly benefits from offering subsidies. Specifically, the social planner optimally
intervenes using subsidies if and only if she can identify at least one consumer type for whom she
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would be willing to offer a cash transfer to all consumers with higher demand for the good than
the identified type. Intuitively, if the social planner offers to reimburse a small amount of spending
for consumers who purchase more than the laissez-faire demand of that type, the increase in their
weighted surplus is linear in the reimbursement paid, while the costs of distorting consumption for
a small group of lower types are second-order. As a result, the social planner strictly benefits from
sufficiently small reimbursements, while the optimal nonlinear subsidy schedule can only improve
upon that outcome.

To better understand the constraints imposed by the private market, we contrast the
implications of Theorem 1 in two benchmark cases: for goods with positive versus negative
correlations between demand and need. When demand and need are negatively
correlated—which might best model consumption patterns for food, education, and normal
goods—the social planner can profitably intervene using subsidies if and only if the average
welfare weight exceeds the opportunity cost of funds. In this case, the social planner would
prefer to make cash transfers to all consumers, because total subsidy payments—which are
increasing in quantity consumed—are strictly more regressive than the equivalent cash transfer.1

When demand and need are positively correlated—which might best model consumption of
staple foods, public transit, and inferior goods—the social planner can profitably intervene using
subsidies whenever the maximum welfare weight exceeds the opportunity cost of funds. In this
case, the social planner can always redistribute to the highest-demand (and thus highest-need)
consumers by offering a subsidy that distorts their consumption upwards without making it so
generous as to attract low-demand (and thus low-need) consumers.

Our second main result, Theorem 2, provides an explicit characterization of the optimal subsidy
mechanism. Whenever the average welfare weight exceeds the opportunity cost of public funds, the
optimal subsidy mechanism includes free provision of a baseline quantity of the good. Conversely,
whenever the average welfare weight is strictly less than the opportunity cost of public funds, the
initial units of the good are not subsidized. In general, for any type for whom the condition in
Theorem 1 is satisfied, the marginal unit purchased by that type in the optimal subsidy mechanism
is at least partially subsidized.

When demand and need are negatively correlated, Theorem 2 implies that it is optimal for the
social planner to either offer a quantity of the good for free or no subsidies at all. Intuitively, this is
because whenever the average welfare weight exceeds the opportunity cost of subsidy spending—
which is the condition identified in Theorem 1 under which the social planner can benefit from

1 As we discuss below, there may be other reasons that the social planner prefers to use in-kind subsidies over cash
transfers, including political preferences for in-kind redistribution and household dynamics.
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subsidy intervention under negative correlation—the planner would like to offer cash transfers
to all consumers. If the social planner can only redistribute in-kind, she uses free provision of
the good as a substitute for that cash transfer. The optimal subsidized payment schedule with
negative correlation generally contains at most three components, as illustrated in Figure 1(a):
(i) free provision of some units of the good, (ii) partial subsidization of some additional units up
to a maximum quantity, and (iii) any consumption beyond that maximum at the market price.
In the negative correlation case, we find that, under the optimal mechanism, the social planner
would strictly benefit from restricting consumers from topping up in the private market. With
that restriction, the social planner could screen out low-need consumers while targeting subsidies
to high-need ones.

On the other hand, when demand and need are positively correlated, we find that—under the
optimal mechanism determined in Theorem 2—the social planner does not benefit from restricting
consumers from topping up in the private market. The optimal mechanism in that case matches
the optimal mechanism in a relaxed program in which the social planner can require consumers to
choose between participating in a subsidy program or a private market (but not both)—a problem
that we study in a companion paper (Kang and Watt, 2024). The resulting subsidy program has
a self-targeting property: subsidies are provided precisely to the consumers that the social planner
most wants to benefit, with the largest benefits accruing to those assigned the highest welfare
weights. By screening consumers based on demand, in-kind subsidies can be a more effective
instrument for redistribution than cash transfers. In that case—which is when the opportunity
cost of funds is larger the average welfare weight but less than the maximum welfare weight—the
optimal subsidy involves some initial units of the good offered at the market price, with additional
units beyond some threshold sold at a reduced price, as illustrated in Figure 1(b).

Our characterizations of optimal subsidy programs comport with the features of some existing
programs. For instance, the Supplemental Nutrition Assistance Program (SNAP) provides a
fixed monthly benefit with strict criteria for eligibility, and recipients are expected to supplement
subsidized consumption with purchases in the private market. The resulting payment schedule for
food mirrors the optimal mechanism when demand and need are negatively correlated, while its
narrow eligibility may be a product of the need to restrict the program to a group of consumers
with high average welfare weight. In contrast, “fare capping” programs used by public transit
authorities in various cities (including New York, London, Sydney and Hong Kong) cap total
fares paid within a weekly or monthly period, allowing unlimited free trips once the cap is met,
typically with broader eligibility. The payment schedule with fare caps resembles the optimal
payment schedule when demand and need are positively correlated in that they both subsidize
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Figure 1: Illustrating the optimal subsidized payment schedules.

consumption beyond a minimum quantity consumed. The broad eligibility of consumers for fare
capping programs may also be due to the self-targeting nature of such mechanisms. Later in
this paper, we explore the applicability and limitations of our results for other in-kind subsidy
programs, such as those for pharmaceuticals and staple foods.

We also analyze how changes in economic primitives affect the optimal subsidy mechanism,
focusing on three kinds of changes: an increase in the social planner’s preference for redistribution,
a change in the correlation between demand and welfare weights, and an increase in demand for
the good. Stronger redistributive preferences and increased demand for the good both lead to more
generous subsidy programs. However, while stronger redistributive preferences expand the set of
subsidized consumers, an increase in demand for the good leaves the set of subsidized consumers
unchanged. The subsidy program is also more generous when there is stronger correlation between
demand and need. As a result, holding all else equal, both the social planner and the average
eligible consumer favor programs that are restricted to consumers with higher welfare weights and
subsidize goods with a strong positive association between demand and need.

Our results may help explain real-world examples of subsidy programs that have
strengthened eligibility requirements or reduced product scope over time. For example, SNAP’s
eligibility requirements have been tightened multiple times over the history of the program to
better target the program to more vulnerable populations. In the Egyptian Bread Subsidy
Program, the government limits the weight of the loaves and the quality of wheat that may be
used in the production of subsidized bread. The Indonesian government has recently restricted
access to its fuel subsidy program to ride-share operators and owners of vehicles with smaller
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engines. Each of these reforms may have increased the average welfare weight of eligible
consumers or the correlation between consumption and the social planner’s preferences for
redistribution. We discuss these examples further in Section 7 below.

We also discuss extensions of our model to address two other important considerations for
subsidy design: the equilibrium effects of subsidies on market prices and how the subsidy design
problem changes when the social planner has some ability to tax the outside market for the good.
These extensions enable our findings to apply to markets where the social planner can influence the
prices that consumers face for supplemental purchases. We also describe how the social planner’s
welfare weights—assumed to be exogenous in our baseline model—can be endogenized in a richer
model, without qualitatively changing our main results.

Our main technical contribution in this paper is an explicit characterization of the solution of
mechanism design problems with lower-bound constraints on the implementable allocation rules.
In our subsidy design problem, this constraint arises from the topping up feature, which ensures
that no consumer can receive less than his laissez-faire consumption. Handling this constraint
is challenging because it interacts with the standard monotonicity constraint, necessitating a
solution method that incorporates both constraints simultaneously. In particular, the optimum is
not obtained by solving a relaxed problem without the lower-bound constraint and enforcing the
constraint on its solution. Instead, we introduce a new “double ironing” procedure that accounts
for these interactions. We also deviate from the standard mechanism design approach to verify the
optimality of the allocation rule. As is standard in mechanism design, we identify an unconstrained
convex program for which the allocation rule is a pointwise maximizer. But instead of using a
Lagrangian approach, we use variational inequality methods to relate the optimality conditions of
the two convex programs.

1.1 Related Literature

Our paper contributes to a literature on in-kind transfers in public finance (surveyed by Currie
and Gahvari (2008)) by deriving the optimal form of in-kind transfers (namely, vouchers or
direct provision) as a function of demand and supply of the good and the social planner’s
objective. Stemming from the pioneering work of Nichols and Zeckhauser (1982), this literature
has shown how in-kind transfers can screen individuals better than cash transfers (e.g.,
Blackorby and Donaldson, 1988) and how a private market might affect this screening (e.g.,
Besley and Coate, 1991; Gahvari and Mattos, 2007). Within this literature, the closest paper is
Blomquist and Christiansen (1998), which focuses on the tradeoff between allowing topping up
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and restricting topping up in a subsidy program using a Mirrleesian model of labor and leisure.
Whereas previous work has tended to assume the form of in-kind transfer that the social planner
can use—typically an ad valorem subsidy—our paper endogenizes the social planner’s choice
using tools from mechanism design and finds that the optimal subsidy mechanism is nonlinear.
We also focus on screening using consumption preferences, and only briefly discuss costly
screening (“ordeals”), as studied by Nichols and Zeckhauser (1982), Finkelstein and Notowidigdo
(2019), Yang (2021), Yang, Dworczak and Akbarpour (2024) and others.

Our paper is also related to the growing literature on redistributive mechanism design.
Weitzman (1977) first observed that distortions from the allocation that would arise in a
competitive market can help redistribute when the social planner seeks to maximize a different
objective than utilitarian welfare. An ensuing literature has used tools from mechanism design
to formalize Weitzman’s observation and characterize optimal mechanisms in general settings
(e.g., Condorelli, 2013; Che, Gale and Kim, 2013; Dworczak r○ Kominers r○ Akbarpour, 2021;
Akbarpour r○ Dworczak r○ Kominers, 2024b). These insights have also been applied to settings
with finitely many agents (e.g., Kang and Zheng, 2020; Reuter and Groh, 2020) and externalities
(e.g., Kang, 2024; Akbarpour r○ Budish r○ Dworczak r○ Kominers, 2024a; Pai and Strack,
2024). In this literature, our paper is closest to our companion paper, Kang and Watt (2024),
which studies the design of in-kind redistribution programs when consumers must choose
between participating in a subsidized program or the private market (as in public housing
subsidy programs and some others). Our paper is also related to Kang (2023), in that we allow
consumers to access a private market that the social planner cannot design. While Kang (2023)
assumes that the social planner is restricted to only some forms of in-kind transfers (namely,
only a good of a single quality level can be directly provided) and focuses on equilibrium effects
rather than the possibility of topping up, our paper contributes by removing this restriction and
endogenizing the social planner’s choice of in-kind transfers.

The presence of a private market that the social planner cannot control in our model connects
our paper to work on partial mechanism design, or “mechanism design with a competitive
fringe.” This literature has studied optimal interventions in markets with adverse selection (e.g.,
Philippon and Skreta, 2012; Tirole, 2012; Fuchs and Skrzypacz, 2015), optimal pricing with
resale (e.g., Carroll and Segal, 2019; Dworczak, 2020; Loertscher and Muir, 2022), optimal
contracting with type-dependent outside options (e.g., Jullien, 2000), optimal contracting
between firms (e.g., Calzolari and Denicolò, 2015; Kang and Muir, 2022), and optimal
redistribution (e.g., Kang, 2023). Our paper contributes to this literature by enriching how the
social planner can intervene: whereas previous work has tended to assume that the social planner
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and the private market have access different production technologies for the sake of tractability,
our paper develops tools to analyze when the social planner and the private market to have
access to the same production technology (which we interpret as the ability of the social planner
to contract public production out to private firms or to directly subsidize private purchases).

From a methodological perspective, our paper primarily builds on two different techniques in
the literature on mechanism design. On one hand, we use insights from Kang (2024) in formulating
our mechanism design problem as a projection problem: the social planner seeks to project a
“target function” onto the set of feasible allocation functions. The projection operator is more
complicated in this paper because the private market constrains the set of feasible allocation
functions, but these insights nonetheless allow for an explicit formula for the optimal allocation
function, allowing us to study comparative statics of the optimal mechanism. On the other hand,
using a proof technique to similar to Toikka (2011), we relate the optimality conditions for our
constrained program to the optimality conditions of a related unconstrained convex program,
for which the solution is a pointwise maximizer. We show how to adapt the ironing operation
introduced by Myerson (1981) (and extended by Toikka (2011) and others) to account for the
private market constraint. We verify our candidate solution using variational inequality methods
(distinct from the Lagrangian techniques developed for similar problems by Amador, Werning and
Angeletos (2006) and Amador and Bagwell (2013)).

Finally, as we show, the constraints on the set of feasible allocations due to the private market
lead to a lower-bound constraint on the allocation rule, an example of what the literature has
called “first-order stochastic dominance constraints.” This connects our paper to a few papers
that have studied mechanism design problems under such constraints (e.g., Kang and Muir, 2022;
Corrao, Flynn and Sastry, 2023; Yang and Zentefis, 2024). Our paper contributes both in the
application we study and by obtaining an explicit formula for the optimal allocation function for
problems with such constraints for separable (cf. Mussa and Rosen (1978)) preferences.

1.2 Organization

In Section 2, we introduce a model of in-kind subsidy design for a redistributive social planner
in a setting with topping up. In Section 3, we explore the constraints imposed by topping up
and discuss when the social planner benefits from offering subsidies. In Section 4, we characterize
the optimal subsidy mechanism and discuss the details of its implementation. In Section 5, we
discuss how various economic primitives affect the optimal subsidy mechanism, including the
differences in subsidy design according to the correlation between demand and need, as well as
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the effect of changes in the designer’s preferences for redistribution. In Section 6, we discuss
various extensions of the model, and in Section 7, we discuss how our findings relate to in-kind
subsidy designs observed in practice and how our results provide insights into product choice
and eligibility restrictions for in-kind subsidies, which are not explicitly included in our baseline
model. In Section 8, we conclude. Our appendices contain proofs omitted from the main text and
additional material.

2 Model

In this section, we formulate a model of subsidy design for a social planner with redistributive
preferences and establish a laissez-faire benchmark for comparison with the subsidy designs.

2.1 Economic Primitives

There is a unit mass of risk-neutral consumers in a market for a divisible good.
Each consumer is privately informed of his type θ, distributed according to an absolutely

continuous cumulative distribution function F with positive density function f supported on the
type space Θ := [θ, θ], where θ > 0. Consumer preferences are quasilinear in money, with each
consumer’s type determining his value from consumption: a consumer of type θ derives utility
θv(q) − t from consuming q units of the good and paying t units of money. Unless otherwise
stated,2 we assume that the valuation function v : [0, A] → R+ is twice continuously differentiable,
with v′ > 0 and v′′ < 0. For notational simplicity, we extend the domain of (v′)−1 to the entire
real line, setting (v′)−1(z) = 0 for z ≥ v′(0) and (v′)−1(z) = A for z ≤ v′(A), allowing us to write
the individual demand curve as

D(p, θ) = (v′)−1
(p
θ

)
.

For now, we assume that the good is supplied competitively by producers in a private market,
each with a constant marginal cost of production, denoted by c > 0. In Section 6.1, we discuss
extensions of our results that allow alternative private market structures.

2 In Appendix D.3, we discuss the important special case of unit demand, for which the valuation function v(q) = q
is not strictly concave.
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2.2 Laissez-Faire Equilibrium

In the laissez-faire equilibrium of the market, the good is priced at its marginal cost, c. Given
that price, each consumer solves his utility maximization problem,

ULF(θ) := max
q∈[0,A]

[θv(q)− cq] .

The strict concavity and monotonicity of v implies that the solution to this optimization problem
is unique for each type and increasing in θ. We call that solution the laissez-faire allocation rule
and denote it by qLF(θ) = D(c, θ). The First Welfare Theorem (Arrow, 1951) implies that qLF

maximizes utilitarian surplus, which is the sum of consumers’ utilities minus production costs.

2.3 Social Planner’s Objective

Instead of maximizing utilitarian surplus, the social planner assigns weights to the utility of
different consumers and the costs of spending as follows:3

(a) Consumer Surplus : The social planner assigns a positive welfare weight ω(θ) to type θ’s
consumer surplus, which is the increase in expected social welfare associated with giving a
dollar to a consumer of type θ.4 We assume that ω : Θ → R+ is continuous.

While our main results (Theorems 1 and 2) do not require additional assumptions on ω, we
focus on two key cases to study the economic implications:

(i) Negative correlation: ω decreases in θ, meaning higher-demand consumers have lower
welfare weights. If ω is determined by income, with the social planner seeking to
redistribute to lower-income consumers, the negative correlation assumption may best
model markets for food, housing, education, and other normal goods.

(ii) Positive correlation: ω increases in θ, meaning higher-demand consumers have higher
welfare weights. If ω is determined by income, with the social planner seeking to
redistribute to lower-income consumers, the positive correlation assumption may best
model markets for staple food, public transportation, and inferior goods.

3 In Section 6.3, we discuss how these weights may be determined endogenously in a richer model with budget
constraints and concave utility, with the weight α corresponding to the Lagrange multiplier on the social planner’s
budget constraint and ω(θ) as the expected marginal value for money of a consumer with type θ.

4 While the welfare weight is a deterministic function of type in our model, it is equivalent to model the consumer
as having a type (θ, ω̃) where ω̃, the welfare weights, is a random variable, in which case ω(θ) = E[ω̃|θ] is the
expected welfare weight of a consumer with demand type θ (see, e.g., Akbarpour r○ al. (2024b)). In Section 7,
we will return to this interpretation of ω(θ).
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(b) Cost of Spending : The social planner assigns a weight α to the cost of spending, capturing
the opportunity cost of funds. Below, we show that the key features of the optimal subsidy
design depend on how α compares to E[ω]: we say that the opportunity cost of funds is high
if α > E[ω] and that the opportunity cost of funds is low if α ≤ E[ω]. The opportunity
cost of funds might be high because the social planner has other redistributive programs
competing for the same budget (including cash transfers outside the mechanism) or because
of distortions associated with raising tax revenue. On the other hand, we would expect α to
be low if the social planner faces political constraints that limit her ability to redistribute
outside the mechanism.5

Putting these components together, the social planner’s objective is weighted total surplus,∫
Θ

{
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

−α [cq(θ)− t(θ)]︸ ︷︷ ︸
total costs

}
dF (θ),

where q(θ) is the quantity consumed by a consumer of type θ and t(θ) is the consumer’s payment
to the social planner. The utilitarian objective is obtained by setting ω(θ) ≡ α. When the
welfare weights are not all identical, the social planner would like to redistribute surplus towards
consumers with ω > α and away from consumers with ω < α.

2.4 Subsidy Design

To reallocate goods and money among different types of consumers, the social planner can subsidize
purchases of the good.6 To do so, the social planner announces a subsidized payment schedule
T S : [0, A] → R+, where T S(z) is the total payment that a consumer must make to obtain z

units of the good from the social planner, so S(z) = cz − T s(z) is the total subsidy received by
a consumer who purchases z units of the good. While the private market’s payment schedule
is linear under the assumption of perfect competition, the social planner’s subsidy schedule may
involve nonlinear pricing. We allow the social planner to give away some goods for free by setting

5 For example, Liscow and Pershing (2022) find that the U.S. general population largely prefers in-kind subsidies
to cash transfers. In other cases, subsidies may be designed by government agencies without the authority to
offer cash transfers. Alternatively, in-kind subsidies might be preferred for household economics reasons: for
example, Currie (1994) finds evidence that in-kind subsidy programs may have stronger benefits for children
than cash transfer programs.

6 For now, we assume that the full unit mass of consumers is eligible for the subsidy program, and we discuss
the implications of our results for a model in which the social planner can determine eligibility rules based on
observable characteristics in Section 7.
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T S(z) = 0 for some z > 0, but require T S(z) ≥ 0, so she cannot reimburse more than the laissez-
faire cost of the good to consumers. We require that T S(0) = 0 so the consumer can always opt
out of the subsidized market. The social planner shares the same production technology as the
private market, with the same marginal cost c for the good.

A key assumption, introduced in this paper, is that consumers can top up their consumption
of subsidized units of the good by purchasing additional units at the competitive market price
of c.7 We assume that the social planner can verify that the consumer has consumed at least
the number of units of the good he reports to have consumed in order to receive the subsidy but
cannot prevent the consumer from purchasing additional units of the good beyond the reported
amount. As a result, consumers cannot access the subsidized payment schedule multiple times
nor can they resell quantities of the good.8

Mechanism design formulation Instead of focusing directly on the subsidized payment
schedule, we frame the social planner’s choice as a mechanism design problem. The social
planner determines each consumer’s total consumption, including both subsidized and privately
purchased units. Since the social planner has the same production technology as the private
market, total consumption is sufficient to determine total costs and surplus. In the mechanism
design formulation, the social planner chooses a direct mechanism (q, t), consisting of:

(a) an allocation rule q : Θ → [0, A], where q(θ) is the total quantity consumed by type θ, and

(b) a payment rule t : Θ → R, where t(θ) is the total payment made by a consumer of type θ.

While this formulation implicitly restricts attention to deterministic mechanisms, we show in
Appendix C.1 that this is without loss: assuming that v is strictly concave and the good is
divisible, the social planner never benefits from randomization.

We now specify which mechanisms are feasible. Without loss of generality, we focus on direct
mechanisms, in which consumers truthfully report their types to the social planner, who then
determines their allocations and payments. The possibility of topping up in the private market

7 In Kang and Watt (2024), we study the alternative case in which the consumer is precluded from topping up his
consumption of the good and must choose between a public option or a private market.

8 Resale may be a concern in some subsidy markets. Our model could also be extended to include costly resale,
leading to a lower bound on the marginal price in the total payment schedule, but we focus on the case without
resale to isolate the effect of the private market on subsidy design. Empirical evidence from the US SNAP
program finds resale (a form of food stamp fraud) to be a second-order concern in practice, with Woody, Zhao,
Lund and Wu (2024) estimating that less than 1.5% of food stamp spending is fraudulent.
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introduces new potential deviations by consumers, leading to stronger constraints on the
mechanism design problem.

The first is a strengthening of the standard incentive compatibility constraint, ruling out not
only type misreports but also topping up in the private market. Let V (θ, θ̂) be the maximum
utility a consumer of type θ could obtain by reporting type θ̂ and topping up his consumption, so

V (θ, θ̂) = max
z≥q(θ̂)

{
θv(z)− t(θ̂)− c(z − q(θ̂))

}
,

The incentive compatibility constraint with topping up requires that

for all θ ∈ Θ, θv(q(θ))− t(θ) = max
θ′∈Θ

V (θ, θ′). (IC-T)

Second, a consumer might bypass the subsidized market entirely and rely solely on the private
market, leading to the individual rationality constraint :

for all θ ∈ Θ, θv(q(θ))− t(θ) ≥ ULF(θ). (IR)

Finally, we assume the social planner is restricted from setting a negative payment for any
quantity of the goods, so it cannot make lump-sum transfers to consumers via the subsidy market.
This leads to the no lump-sum transfers constraint :

for all θ ∈ Θ, t(θ) ≥ 0. (NLS)

This rules out lump-sum transfers within the mechanism but not outside the mechanism, which
may influence the social planner’s preferences for spending within the mechanism by changing the
opportunity cost of funds, α.

In Figure 2, we illustrate the constraints in the mechanism design problem in price-quantity
space.9 For a consumer of type θ, the (NLS) constraint requires that the price-quantity pair
(t(θ), q(θ)) lies above the quantity axis, while the (IR) constraint requires that it lies below θ’s
laissez-faire indifference curve (which is tangent to the price schedule at qLF(θ)). Fixing such
a price-quantity pair—say (t(θ), q(θ)), the red point in Figure 2—the (IC-T) constraint imposes
several conditions on the price-quantity pair assigned to a type θ̂ > θ, corresponding to different
possible deviations by consumers. First, as in standard screening problems (e.g., Stiglitz, 1982;

9 In Appendix D.1, we extend the analysis of Figure 2 to calculate the optimal subsidy mechanism in an example
with two types of consumers.
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Maskin and Riley, 1984), to prevent either type preferring the other’s allocation, (t(θ̂), q(θ̂)) must
lie above θ’s indifference curve through (t(θ), q(θ)) and below θ̂′s indifference curve through the
same point. Second, unlike standard screening problems, the (IC-T) constraint requires that the
marginal price difference t(θ̂) − t(θ) be lower than the market price for additional consumption
c[q(θ̂) − q(θ)], so (t(θ̂), q(θ̂)) must lie below the blue line in Figure 2. Together, this means that
(t(θ̂), q(θ̂)) must lie in the shaded region of Figure 2.

θ’s indifference curve at (t(θ), q(θ))

θ̂’s indifference curve at (t(θ), q(θ))

quantity

price
laissez-faire payment schedule

θ’s laissez-faire indifference curve

t(θ) + c[q − q(θ)]

t(θ)
cqLF(θ)

qLF(θ) q(θ)

Figure 2: Illustrating the constraints in price-quantity space.

Putting these constraints together, the social planner chooses a feasible mechanism to maximize
weighted total surplus:

max
(q,t)

∫
Θ

{
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

−α [cq(θ)− t(θ)]︸ ︷︷ ︸
total costs

}
dF (θ), (SUB)

such that (q, t) satisfies (IR), (IC-T) and (NLS).

Because the laissez-faire mechanism (qLF, cqLF) is always feasible, the set of feasible mechanisms
is always nonempty, and the optimization program (SUB) is well-posed. In Appendix C.2, we show
that there exists a unique optimal mechanism when E[ω] ̸= α, and when E[ω] = α, the optimal
mechanism is unique up to a constant in the payment rule. We let (q∗, t∗) denote an optimal
subsidy mechanism, and call q∗ the subsidy allocation rule. We also write U∗(θ) for the consumer
surplus of type θ in the optimal subsidy mechanism.
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Implementation We say that a mechanism (q, t) is implemented by a subsidized payment
schedule T S if

for all θ ∈ Θ, q(θ) ∈ argmax
z∈[0,A]

[
θv(z)− T S(z)

]
and t(θ) = T S(q(θ)).

Because the social planner is equally efficient as the private market, there is no difference in the
model between (a) the social planner producing all units of the good and offering them for sale
at the subsidized payment schedule T S and (b) all goods being produced and sold in the private
market, with the social planner paying total subsidies S(z) for z units of consumption (or some
mix of the two).

Note that any feasible mechanism can be implemented by a subsidized payment schedule
T : [0, A] → R as follows. For any z ∈ im q, let T (z) = t(θ) for any θ ∈ q−1(z). Then, for any
z /∈ im q, set T (z) equal to the payment for the least z′ > z with z′ ∈ im q, or +∞ if there is no
such z′.

2.5 Model Discussion

The key assumption introduced in this paper is that consumers can top up subsidized allocations in
a private market. In many real-world subsidy markets, including those for food, transport and fuel,
the prohibitive costs associated with monitoring and enforcing private market restrictions makes
topping up practically unavoidable. By assuming that consumers can buy at the competitive price
c, the model rules out the social planner setting a tax on private market purchases. Without this
assumption, the social planner could set an infinite tax on the private market and implement any
(nondecreasing) allocation via appropriate subsidies. Ruling out taxes is realistic in many cases,
such as when the subsidy designer lacks taxation powers (e.g., because the subsidy is designed by
a local government authority or agency separate from the taxation office), when there are political
constraints that make commodity taxation costly, or when the social planner internalizes the costs
of high taxation on consumers ineligible for subsidies. In other markets, while it may be possible
to tax, restrict, or shut down the private market, such actions come at a cost, which the social
planner would need to weigh against the benefits of better-targeted subsidies. The optimal subsidy
program identified in this paper helps assess the tradeoffs of such interventions, which we discuss
further in Section 6.2.

Another important assumption in our subsidy design model is the no lump-sum transfers
constraint, (NLS). In practice, this constraint may arise from political constraints, administrative
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costs, or the fact that the subsidy program is designed by an agency (e.g., the transportation
department) without the authority to make unrestricted cash transfers. While we rule out lump-
sum transfers directly within the mechanism, any such transfers made outside the mechanism can
be captured in our model via their influence on the opportunity cost of funds α. Including the
(NLS) constraint allows us to assess when the social planner would prefer cash transfers (alongside
or in place of a subsidy) and when the restriction is non-binding.

We have made two significant assumptions on the production technology facing the social
planner. The first is that the social planner can access the same production technology as the
private market, which may reflect arrangements with either producers or consumers.10 On the
supply side, for example, the social planner could costlessly contract with private firms to produce
subsidized goods or subsidize them to offer the recommended pricing schedules. On the demand
side, the social planner could reimburse consumers for their private market spending. The second
is that the supply schedule (for both the public and private markets) is perfectly inelastic. That
assumption shuts down the possibility of equilibrium effects on prices caused by the social planner’s
choice of subsidy mechanism. We foreclose that possibility in our main model to better understand
the effects of the topping up constraint in isolation, with other papers (including Kang (2023))
focusing on equilibrium effects in isolation. However, in Section 6.1, we discuss how to extend our
baseline model to incorporate equilibrium effects on prices.

In our formulation, we have also implicitly assumed that all consumers are eligible for the
subsidy program and that the choice of product for subsidization is exogenous. In practice, the
social planner may have some discretion over which product to subsidize and which consumers
qualify based of observable characteristics, a possibility we revisit in Section 7.

3 When Does The Social Planner Offer Subsidies?

In this section, we present our first main result: a necessary and sufficient condition for when the
social planner can strictly improve on the laissez-faire outcome.

Theorem 1 (scope of optimal subsidy). The optimal mechanism (q∗, t∗) strictly improves on the
laissez-faire outcome if and only if there exists a type θ̂ ∈ Θ for which

Eθ

[
ω(θ) | θ ≥ θ̂

]
> α.

10 By contrast, Kang (2023) studies the case in which private producers are more efficient than the social planner
who can offer only one price-quantity pair to consumers (who cannot top up in the private market).
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In particular:

(a) If ω is decreasing in θ, then (q∗, t∗) strictly improves on the laissez-faire outcome if and only
if Eθ[ω] > α.

(b) If ω is increasing in θ, then (q∗, t∗) strictly improves on the laissez-faire outcome if and only
if maxω > α.

To obtain this result, we first study the implications of the (IC-T) constraint for the subsidized
payment schedule. We show that the consumer’s ability to top up requires the social planner to
set a payment schedule with total subsidies increasing with the quantity consumed. This feature
aligns with the goal of redistributing to higher welfare weight consumers when ω is increasing in
θ, but conflicts with this objective when ω is decreasing. As a result, there is a narrower scope
for redistribution using in-kind subsidies for goods with negative correlation between demand and
need than for positive correlation. More generally, if the average welfare weight of consumers
with type at least θ̂ exceeds the opportunity cost of funds, we show that the social planner can
use nonlinear subsidies to benefit those consumers more than the associated costs of distorted
consumption for consumers with lower types.

3.1 Proof of Theorem 1

Reformulating the (IC-T) Constraint. The (IC-T) constraint, as formulated above, imposes
joint restrictions on allocations and prices in any feasible subsidy program. To better understand
the constraints on redistribution imposed by the consumers’ ability to top up in a private market,
we now study the implications of (IC-T) for subsidized price schedules and allocation rules.

Proposition 1 (reformulating the incentive constraint with topping up). Let (q, t) satisfy the
(IR) and (NLS) constraints. The following are equivalent:

(i) (q, t) satisfies the (IC-T) constraint.

(ii) (q, t) can be implemented by a subsidized payment schedule T S : [0, A] → R+ such that the
total subsidy S(z) = cz − T S(z) is positive and nondecreasing.

(iii) (q, t) satisfies the standard incentive compatibility constraint

for all θ ∈ Θ, θ ∈ argmax
θ′

[θv(q(θ′))− t(θ′)] , (IC)
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and the lower-bound constraint

for all θ ∈ Θ, q(θ) ≥ qLF(θ). (LB)

We prove Proposition 1 in Appendix C.3, but now briefly discuss the intuition.
The fact that (i) implies (ii) follows by contradiction. If total subsidies S(q) decreased between

q(θ) and q(θ′) with q(θ′) > q(θ), a consumer of type θ′ would prefer to misreport his type as θ

and buy the difference q(θ′) − q(θ) in the private market, violating the (IC-T) constraint. This
can be seen in Figure 2 above: the (IC-T) constraint from allocation (t(θ), q(θ)) lowers the set
of feasible prices for q ≥ q(θ) by the vertical gap between the laissez-faire payment schedule and
(t(θ), q(θ)), which is the total subsidy received by type θ. Therefore, the total subsidy for higher
consumption levels must be at least as large. Conversely, if the payment schedule has slope at
most c (as implied by (ii)), a consumer of type θ has no incentive to report θ′ ̸= θ to receive q(θ′)

and then top up at the market price c, because the total payment would exceed the subsidized
price for the same quantity.

To see that (i) implies (iii), note that the (IC) constraint is implied directly by (IC-T), and
the lower-bound constraint (LB) holds because any consumer allocated less than his laissez-faire
demand would purchase additional units in the private market to reach that consumption level.
The converse follows from the Milgrom and Segal (2002) envelope theorem implied by (IC),
which requires that the marginal price at q(θ) units of consumption equals the marginal value of
consumption to type θ, which is always less than c when (LB) is satisfied. This implies that the
subsidized payment schedule has a slope at most c, so the total subsidy is increasing in the
consumption level, completing a chain of implications from (iii) to (ii) to (i).

Applying Proposition 1. The requirement that total subsidies increase with the quantity
consumed means that the social planner’s redistributive power depends critically on the
relationship between welfare weights and consumer demand. In particular, while Proposition 1 is
stated in terms of T S(z), it also implies that total subsidies are increasing in θ since consumer
demand is increasing in θ under any subsidized payment schedule by the supermodularity of the
consumer’s objective, θv(z)− T S(z).

When the social planner assigns higher welfare weights to low-demand consumers, meaning ω(θ)

is decreasing, the monotonicity of total subsidies conflicts with the social planner’s redistributive
preferences. By Theorem 1, the social planner offers in-kind subsidies only when E[ω] > α. On the
other hand, whenever E[ω] > α, the (NLS) binds because transferring a dollar to all consumers
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would increase weighted surplus by E[ω] but cost α, which is profitable if and only if E[ω] > α.
As a result, when demand for the good and need are negatively correlated, the social planner only
subsidizes consumption if she is restricted to redistributing in-kind and would otherwise prefer to
offer cash transfers to all consumers.

On the other hand, to see why the social planner does not offer in-kind subsidies when ω is
decreasing and E[ω] ≤ α, note that a consumer’s increase in surplus from a subsidy is bounded
above by the subsidy itself. This is because the consumer may need to spend part of the subsidy
on extra consumption to qualify for the payment, and the value placed on consumption beyond
the laissez-faire level is always less than the cost. The social planner’s benefit of a subsidy schedule
S, measured by the expected increase in weighted consumer surplus, is bounded as follows:∫

Θ

[
ω(θ)(U(θ)− ULF(θ))

]
dF (θ) ≤

∫
Θ

[ω(θ)S(q(θ))] dF (θ)

≤ Eθ[ω(θ)]Eθ[S(q(θ))],

where the first inequality reflects the above reasoning, and the second arises from the negative
correlation between ω (decreasing in θ by assumption) and the subsidy (increasing in θ). This
shows that subsidies are more regressive than the equivalent lump-sum transfer, so the social
planner’s benefit is lower than that of an equivalent lump-sum transfer to all consumers.11 Since
E[ω] ≤ α, the social planner prefers not to make lump-sum transfers and, thus, does not opt for
the more regressive subsidy.

When the social planner has higher welfare weights for high-demand consumers, so ω(θ) is
increasing, the monotonicity of total subsidies aligns with the social planner’s redistributive
preferences. In this case, Theorem 1 shows that the social planner redistributes whenever there
is a consumer type with ω(θ) > α. More generally, whenever E[ω|θ ≥ θ̂] > α for some θ̂ ∈ Θ

(which necessarily holds for θ̂ near θ when ω is decreasing and maxω > α), we can construct a
subsidized payment schedule that increases the social planner’s payoff compared to laissez-faire.

To establish Theorem 1, consider the subsidized payment schedule illustrated in Figure 3, where
the social planner reimburses ε of spending for any consumer buying more than qLF(θ̂) units. All
consumers with types θ ≥ θ̂ receive an ε increase in utility, while the social planner incurs a cost of
ε. The overall effect on weighted total surplus is thus ε times the positive

∫ θ

θ̂
[ω(θ)−α] dF (θ), which

11 The fact that linear subsidies are more regressive than cash transfers in the case of negative correlation is
known (see, e.g., Diamond and Mirrlees (1972)), but our result is stronger, implying that any subsidy offered
to consumers with unrestricted access to the private market for the good must be more regressive than cash
transfers.
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is linear in ε. On the other hand, the (IC-T) constraint requires the social planner to increase
consumption for consumers just below θ̂ to qLF(θ̂), as shown in Figure 3. While this raises their
utility, the net effect after accounting for the cost of funds may be negative (but bounded below
by −αε per consumer). Because the mass of such consumers is O(

√
ε), which is decreasing in ε,12

the total cost of the subsidy to those types is O(ε
3
2 ), which is negligible compared to the benefits

of subsidizing those with θ ≥ θ̂ for small ε (which is linear in ε). Thus, the social planner can
always design a subsidy scheme that increases its objective compared to the laissez-faire outcome.

laissez-faire payment schedule
ε-perturbed payment schedule

θ̃v(q)− ULF(θ̃) for some θ̃ ≤ θ̂ near θ̂

qLF(θ̂)

price

quantity

Figure 3: The ε-perturbed subsidy schedule, illustrating an indifference curve of type θ̃ ≤ θ̂ just indifferent
between qLF(θ̃) and the subsidized qLF(θ̂). Types between θ̃ and θ̂ strictly prefer the subsidized qLF(θ̂).

3.2 Discussion

To understand the role of topping up in Theorem 1, we compare our result on the scope of
intervention with similar results for two alternative models of private market interactions with
government. In the first, which we call the shutdown benchmark, the social planner can shut
down the private market for the good. In the second, called the opt-in benchmark, the social
planner can require consumers to choose between participating in the subsidized market or the
private market.

Our main conclusion is that the consumer’s ability to top up in a private market generally
limits the social planner’s ability to redistribute. In the special case in which welfare weights are
increasing in consumer demand, the topping up constraint is non-binding, and the optimal subsidy
program with topping up coincides with the program enacted by a social planner who can require
consumers to opt in or out of the subsidized market.

12 We prove this formally in Appendix C.4.
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Shutdown Benchmark. With the ability to shut down the private market for the good, the
social planner can set prices higher than c for some units of the good to extract revenue from
consumers with higher welfare weights and then use that revenue to subsidize consumers with lower
welfare weights. As a result, whenever the social planner’s objective differs from the utilitarian
objective, the social planner can strictly improve on the laissez-faire outcome using a mix of
taxation and subsidies (see Appendix C.5 for details). This means that there is a wider scope of
in-kind redistribution when the social planner can shut down the private market. For example,
when ω is decreasing in θ and E[ω] ≤ α, a social planner unconstrained by a private market taxes
all consumption, with higher taxes levied on higher consumption levels. By an argument similar
to the one used in the previous subsection, the negative correlation between total tax payments
and welfare weights implies that the benefit of the nonlinear taxation scheme exceeds the benefit
of a lump-sum tax, which is nonnegative because E[ω] ≤ α.

Opt-In Benchmark. In some redistribution programs (e.g., public housing and some public
childcare and education programs), it is difficult for consumers to top up subsidized allocations
in the private market. This restriction expands the social planner’s set of feasible mechanisms
by limiting consumers’ ability to deviate: consumers need to decide whether to consume in the
subsidized market or the private market.13

In a companion paper (Kang and Watt, 2024), we study the resulting subsidy design problem.
In that case, the social planner offers a subsidy program if and only if the maximum welfare weight
among all consumer types exceeds the opportunity cost of funds. Intuitively, the social planner can
always target higher welfare weight consumers by offering small subsidies near their laissez-faire
consumption levels without those subsidies attracting lower welfare weight consumers to opt into
the subsidy program.

When welfare weights are correlated with demand, the condition for subsidies without topping
up matches the condition in Theorem 1 for markets with topping up. In fact, we show in our
companion paper that the social planner never needs to enforce restrictions on topping up in
order to implement the optimal mechanism—as a result, the optimal mechanisms we identify for
increasing welfare weights are the same in both models. As we discuss in Section 4, this is because
consumers with low types in the optimal mechanism effectively consume only in the private market,

13 On the other hand, any feasible mechanism with topping up can be offered in the opt-in context by the social
planner producing all units of the good and selling them at the subsidized payment schedule, which would lead
all consumers to opt in (rather than the equivalent implementation of the subsidy mechanism with topping up,
discussed in Section 2.4, in which the social planner pays subsidies for goods purchased in the private market).
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while consumers with high types consume only in the subsidized market.
However, when welfare weights are negatively correlated with demand, the condition for offering

subsidies with topping up is strictly more restrictive than in markets without topping up. This is
because in the optimal mechanism with topping up and negative correlation, the social planner,
who wants to target low-demand consumers, needs to also pay any subsidies offered to high-demand
consumers, because they can always mimic the low-demand type and top up in the private market.
If the social planner could require consumers to choose between participating in the subsidized
market, the very high-demand types would not find it beneficial to mimic the low-demand type
to receive the subsidy because it would require greatly reducing their consumption of the good,
which cannot be topped up in the private market.

4 Optimal Mechanism

In this section, we explain the second main result of this paper, which is an explicit characterization
of the optimal subsidy mechanism.

4.1 Preliminaries

Before introducing our main theorem, we discuss some additional notation and preliminary results
needed for its statement.

Virtual Welfare. We define the virtual welfare J(θ) of a type θ as follows:

J(θ) = θ +

∫ θ

θ
[ω(s)− α] dF (s)

αf(θ)
+

max {E[ω]− α, 0} · θδθ(θ)
αf(θ)

,

where δθ(θ) is a point mass (Dirac delta) centered at θ.
As is standard in mechanism design, the virtual welfare J captures the contribution to the social

planner’s objective of a dollar-equivalent of consumer surplus allocated to type θ, accounting for
the information rents accruing to types above θ as a consequence of the (IC) constraint. Our
expression for J also incorporates the (NLS) constraint, allowing us to account for its possible
interactions with the lower-bound constraint in our solution.

As a result, the expression for virtual welfare consists of three additive terms, capturing the
social planner’s tradeoff between equity and efficiency. The first term represents the social
planner’s benefits from efficiently allocating the good. The second term captures the
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redistributive benefits of allocating a unit of the good to type θ, which depends on the social
planner’s weights on consumers of all types above θ, as any increase in utility for type θ must be
granted to all higher types.14 The third term captures the (NLS) constraint, which binds when
E[ω] > α, leading to a point mass at θ. The consumer with type θ plays an important role in our
results because satisfying (NLS) and (IR) for type θ implies those constraints are satisfied for all
higher types. When E[ω] > α, the social planner would like to make a cash transfer to all
consumers, but cannot by (NLS), so instead offers all consumers a free quantity of the good.

We refer to J(θ)−θ as the distortion term of the virtual welfare function. A positive distortion
term means the social planner values the consumption of type θ more than the consumer: she
wants to distort his consumption upwards. Note that J(θ) = θ, reflecting the classic “no distortion
at the top” property.

Ironing. We define the ironing operator ϕ : [θ, θ̂] → R applied to a generalized function ϕ on
an arbitrary interval [θ, θ̂] ⊆ R (cf. Myerson, 1981; Toikka, 2011) as follows. Let Φ : [θ, θ̂] → R be
defined by Φ(θ) =

∫ θ

θ
ϕ(s) dF (s), and let coΦ be the convex envelope of Φ, which is the pointwise

largest convex function satisfying for all θ ∈ [θ, θ̂], coΦ(θ) ≤ Φ(θ). Then ϕ is the monotone
function satisfying

for all θ ∈ [θ, θ̂],

∫ θ

θ

ϕ(s) dF (s) = coΦ(θ).

We illustrate this ironing operation in Figure 4.
Several properties of the ironing operator are used in our results.
First, for any s ∈ [θ, θ], either ϕ(s) = ϕ(s) or s is contained in an ironing interval, on which

ϕ is constant and equal to that interval’s F -weighted average of ϕ. This result is well-known but
established formally in Lemma 2 in Appendix A.

Second, note that the definition of ϕ depends on the domain of ϕ through the construction of
coΦ, as illustrated in Figure 4. Our results apply the ironing operator to the restriction of the
virtual welfare to subintervals [θ, θ̂] ⊆ Θ, denoted J |[θ,θ̂]. One important property of restricted-
domain ironing that we establish in Lemma 3 in Appendix A is that the value of an ironed
function at θ can decrease but not increase as the domain extends rightward, with strict decreases
occurring if and only if θ lies in an ironing interval of the larger domain. That is, for θ̂′ > θ̂, we
have ϕ|[θ,θ̂](θ) ≥ ϕ|[θ,θ̂′](θ), as illustrated in Figure 4.

In mechanism design, ironing is used to address violations of the monotonicity constraint. In

14 Note that the second term is zero for a utilitarian social planner (with ω(θ) ≡ α). By setting ω(θ) ≡ 0 and
α = 1, we obtain the profit-maximizing social planner, and J(θ) is the standard virtual value.
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ϕ|[θ,θ̂′](θ)
ϕ(θ)

θ̂′θ̂ θ̂′

Φ(θ)

co Φ|[θ,θ̂′](θ)

θ θ

ϕ|[θ,θ̂](θ)

θ̂

co Φ|[θ,θ̂](θ)

θ1 θ1

Figure 4: Illustrating the ironing operation applied to ϕ on domains [θ, θ̂] (in red) and [θ, θ̂′] (in black).
The ironed functions agree on [θ, θ1], after which ϕ|[θ,θ̂] > ϕ|[θ,θ̂′].

the subsidy design problem we study, the monotonicity constraint interacts with the lower-bound
constraint, which requires us to identify a new ironing procedure accounting for these interactions.
While ironing is typically needed in mechanism design because of “irregularities” in the type
distribution, that is not the only possible source of ironing in the subsidy design problems. The
virtual welfare function can also have nonmonotonicities caused by the point mass at θ that arises
whenever E[ω] > α (as discussed above) or nonmonotonicities in ω(θ).

4.2 Characterization of the Optimal Mechanism

With these preliminaries, we now state our second main result.

Theorem 2 (characterization of the optimal allocation). The optimal subsidy allocation rule is
unique, continuous in θ, and satisfies

q∗(θ) = D(c,H(θ)),

where H(θ) is the subsidy type of type θ, defined as

H(θ) =

θ if J |[θ,θ](θ) ≤ θ,

J |[θ,κ+(θ)](θ) otherwise,

and κ+(θ) = inf
{
θ̂ ∈ Θ : θ̂ ≥ θ, and θ̂ ≥ J |[θ,θ̂](θ̂)

}
or θ if that set is empty.
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We derive Theorem 2 in Appendix A, along with an extension that permits more general
lower-bound constraints.

In the optimal subsidy mechanism, the social planner induces a consumer of type θ to demand
the same quantity as a consumer of type H(θ) in the laissez-faire mechanism. We call H(θ) the
subsidy type of type θ. Given the expression q∗(θ) = D(c,H(θ)) and the strict monotonicity of
demand in type, there is a one-to-one correspondence between subsidy type and quantity, so it is
equivalent for the social planner to choose H(θ) rather than q(θ). Theorem 2 clarifies that this
transformed type space is the right space in which to conduct analysis of this problem.

Treating H(θ) as the decision variable, the constraints on q can be transformed to constraints
on H. First, the requirement that q be nondecreasing in θ (from (IC)) is equivalent to H being
nondecreasing in θ by the strict monotonicity of demand in type. Second, the requirement that
q(θ) ≥ qLF(θ) is equivalent to H(θ) ≥ θ, again by the monotonicity of demand in type. The
continuity of q∗ (which is not a constraint but a property of q∗ claimed in Theorem 2) is
equivalent to the continuity of H. An important part of the proof of Theorem 2 is establishing
those properties for the function H described in the statement of the theorem, with the proof
exploiting monotonicity properties of the domain-restricted ironing operator.

Constructing the Subsidy Type. Figure 5 illustrates the construction of the subsidy type
H(θ) for two possible virtual welfare functions. In each panel, we plot the virtual welfare J(θ)

(the red dashed curve) and the forty-five degree line (the blue dashed line), which is a lower bound
on the choice of H(θ).

In the example illustrated in Figure 5(a), the virtual welfare J(θ) is increasing in θ, so
J |[θ,θ](θ) = J(θ) for each θ. To construct the subsidy type, Theorem 2 implies that we divide the
type space into intervals according to whether J |[θ,θ](θ) = J(θ) is larger or smaller than θ. In this
case, J |[θ,θ](θ) < θ for θ ≤ θ1, so the subsidy type on [θ, θ1] equals θ. On the other hand, for
θ ≥ θ1, Theorem 2 implies that the subsidy type is J |[θ,θ](θ) = J(θ). This implies that the
optimal allocation rule in this case is q∗(θ) = qLF(θ) for θ ≤ θ1 and q∗(θ) = D(J(θ)) for θ ≥ θ1.

In the example illustrated in Figure 5(b), the virtual welfare is nonmonotone with a point mass
at θ, depicted as a red dot in the diagram and corresponding, as described above, to the case in
which E[ω] > α. In this case, J |[θ,θ](θ) exceeds θ and is decreasing in θ over [θ, θ̂] until it hits the
lower bound at θ̂. This means that for all θ ≤ θ̂, the subsidy type is equal to J ironed over the
interval [θ, θ̂], which is simply a constant equal to the F -weighted average of J on [θ, θ̂]. On the
other hand, for all θ ≥ θ̂, we have J |[θ,θ](θ) < θ, so H(θ) = θ. As a result, q∗(θ) = qLF(θ̂) for all
θ ≤ θ̂, and q∗(θ) = qLF(θ) for all θ ≥ θ̂.
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θ

θ
θ

H(θ)

J(θ)

0

θ1

transformed
types θ

(a) In this case, J(θ) is increasing, and the subsidy
type H(θ) is equal to the lower bound θ for θ ≤ θ1

and then J(θ) for θ ≥ θ1.

θ

θθ1

θ

θ̂

H(θ)

J(θ)

θ

J(θ)

θ

transformed
types

(b) In this case, J(θ) is nonmonotone with a point
mass at θ, and the subsidy type H(θ) is equal to

J |[θ,θ̂] for θ ≤ θ̂ and then θ for θ ≥ θ̂.

Figure 5: Constructing the subsidy type H(θ)

Role of the Topping Up Constraint. To understand the role of the private market in the
subsidy design problem, we now compare the allocation rule q∗ to the optimal allocation rule when
the social planner can shut down the private market. In Appendix C.5, we show that the optimal
allocation rule in the shutdown problem is (cf. Toikka, 2011)

qSD(θ) = (v′)−1

(
J(θ)

c

)
.

Note that as long as J is not almost everywhere the identity function (which corresponds to
the case in which ω(θ) = α almost everywhere), qSD differs from qLF. This means that a social
planner who can shut down the private market almost always finds it profitable to intervene in the
market, reflecting our finding, discussed in Section 3.2, that the topping up constraint restricts
the scope of redistribution by the social planner.

As is clear from Figure 5, the subsidy type in the problem with topping up is not obtained
simply as the pointwise maximum of J(θ) (the gray curve) and the lower bound θ (the blue dashed
line). The basic reason for this is that the monotonicity constraint and the (LB) constraint may
interact: although the two constraints cannot both bind on the same interval (because qLF is
monotone), the two constraints may interact in determining where each constraint binds.

Comparing the shutdown benchmark allocation qSD to the subsidy solution q∗ described in
Theorem 2, we see that private market access distorts consumption upwards, with q∗ strictly
exceeding qSD wherever H(θ) > J(θ). That distortion affects a larger set of agents than those for
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whom the lower-bound constraint would be binding at qSD. In Figure 5(b), for example, q∗ > qSD

for all consumer types, even though the (LB) constraint would be binding on qSD only on [θ1, θ].
In other words, the optimal allocation is not obtained by relaxing (IC-T) and then enforcing the
(LB) constraint on the solution to the relaxed problem.

The intuition for this upward distortion can be understood in terms of information rents: the
cost to a consumer of type θ associated with reporting a lower type θ′ is reduced in the presence
of the private market because he can always top up his allocation, resulting in higher information
rents accruing to type θ. That effect is present for all subsidized types, not only those for whom
the private market constraint would be binding in qSD.

Mathematically, taking the pointwise maximum of qSD and qLF is not optimal if the (LB)
constraint binds on a subset of an ironing interval of qSD, because that would violate a pooling
condition for optimality. In Figure 5, for example, if q(θ) = max{qLF(θ), qSD(θ)}, consumers in
[θ, θ1] would be allocated less than is optimal for the social planner because the average virtual
welfare of those types is higher than J(θ) on that interval.

4.3 Discussion of Proof Approach

There are three main steps in our proof of Theorem 2.
The first step is to rewrite the subsidy design problem as a convex program with a lower-bound

constraint, including deriving the expression for J(θ) above. This step applies standard mechanism
design techniques to reformulate the constraints and objective in terms of the allocation rule. We
deviate from standard mechanism design approaches by incorporating the (NLS) constraint into
the virtual welfare, allowing us to account for interactions between it and the other constraints.

The second step involves establishing the feasibility of q∗. This step exploits several properties
of the ironing operator, which extend similar properties established for a discrete ironing operator
used in the statistics literature on isotonic regression (cf. Van Eeden, 1956; Barlow, Bartholomew,
Bremner and Brunk, 1972; Robertson, Wright and Dykstra, 1988). These propositions, derived
in Appendix A, may be of independent interest in the generalized ironing literature.

The third step is to verify the optimality of q∗. We begin with a standard approach in
mechanism design (see, e.g., Toikka (2011)), relating the subsidy design problem’s solution to
that of a simpler convex program that can be solved pointwise. The challenge of that approach
is to determine the related problem and to verify that the two problems share an optimizer. As
discussed further in Kang (2024), this step may be thought of as a projection of the virtual
welfare J onto the space of feasible functions, which is complicated here by the fact that the
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feasible set is not a convex cone (as it is in the absence of the lower-bound constraint). While
Yang and Zentefis (2024) characterize the extreme points of the feasible set (which they call a
“monotone function interval”), the optimizer of our convex program is typically an interior point
of that set. Whereas Corrao et al. (2023) derive certain properties of the optimizer of a similar
convex program arising in a different setting, our techniques allow us to obtain an explicit
characterization of the optimizer for separable consumer preferences à la Mussa and Rosen
(1978). To verify the solution we identify, we exploit a variational inequality characterizing the
condition for optimality in (OPT), which differs from the more standard Lagrangian approach
used to solve mechanism design programs in the literature (for example, by Amador et al., 2006
and Amador and Bagwell, 2013).

5 Implications for Subsidy Design

In this section, we discuss the implications of our main results for subsidy design, providing
a detailed characterization of the optimal subsidy mechanism under additional assumptions on
the market’s primitives. In particular, we discuss how the main features of the optimal subsidy
mechanism depends on two key factors: whether the opportunity cost of funds is high or low, and
whether welfare weights are positively or negatively correlated with type.15 Table 1 summarizes
the optimal subsidies in each case.

The first factor—how the opportunity cost of funds compares to the average welfare weight—
determines whether the optimal subsidy mechanism involves public provision, by which we mean
a free endowment of the good for all consumers, as we show in Section 5.1 below. The second
factor—whether welfare weights are positively or negatively correlated with type—affects the
subsidy design by changing the sign of the distortions in the virtual welfare term. In particular,
when ω is increasing in θ, the distortion term of the virtual welfare changes sign at most once
from negative to positive, with the initial sign of the distortion term pinned down by the sign of
E[ω]− α. When ω is decreasing in θ, the distortion term changes sign at most once from positive
to negative, and so the social planner wants to distort the consumption of lower types upwards.
We show how the social planner can most effectively use in-kind subsidies to target the consumers
with positive distortion terms in each case.

15 While our main result, Theorem 2, does not require additional assumptions on ω, the sharp characterization of
the optimal subsidy mechanism we derive in this section exploit monotonicity. In Appendix D.2, we extend this
detailed analysis to the case in which welfare weights are U -shaped or inverted U -shaped as a function of θ.

27



High cost of funds (E[ω(θ)] ≤ α) Low cost of funds (E[ω(θ)] > α)
Negative
Correlation
(ω(θ) decreasing) q∗(θ) = qLF(θ) for all θ ∈ Θ.

For some θα ∈ Θ:

q∗(θ) ≥ qSD(θ) for all θ ≤ θα,

q∗(θ) = qLF(θ) for all θ ≥ θα.

Positive
Correlation
(ω(θ) increasing)

For some θα ∈ Θ:

q∗(θ) =

{
qLF(θ) for θ ≤ θα,

qSD(θ) for θ ≥ θα.

q∗(θ) = qSD(θ) for all θ ∈ Θ.

Table 1: Dependence of the optimal mechanism on market primitives

5.1 When Should Non-Market Allocations Be Used?

In some subsidy markets, governments provide all eligible consumers a baseline quantity of the
good. The following proposition sets forth when such non-market allocations are optimal in
markets with topping up.

Proposition 2 (non-market allocations). Non-market allocations arise in the optimal subsidy
mechanism depending on the sign of E[ω]− α, as follows:

(a) If E[ω] > α, the social planner provides all consumers q∗(θ) units of the good for free.

(b) If E[ω] < α, there is no public provision of the good to all consumers, and the initial q∗(θ)
are sold at the laissez-faire price, c.

(c) If E[ω] = α, the social planner is indifferent between providing q∗(θ) units of the good for
free and charging any price less than or equal to cq∗(θ).

The proof of Proposition 2 is in Appendix A.
Intuitively, when E[ω] > α, the social planner would like to make a cash transfer to all

consumers but is constrained by the (NLS) constraint. In that case, she never charges a positive
price for the initial units of the good, since making that quantity free is equivalent to providing
a cash transfer to all consumers. On the other hand, when E[ω] < α, the social planner would
prefer to tax consumers but cannot because of the (IC-T) and (IR) constraints (otherwise, the
consumers would prefer to consume only in the private market). In that case, by Theorem 2,
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q∗(θ) = qLF(θ), and if the planner ever offered the consumer with type θ a subsidy, an increase
in t∗(θ) to the laissez-faire payment level cqLF(θ) would function like a tax on all consumers and
benefit the social planner.

To determine payments for units beyond the first q∗(θ), a payment schedule implementing
the optimal subsidy mechanism can be determined using the taxation principle (cf. Hammond,
1979; Guesnerie, 1981). We provide an explicit expression of the optimal payment schedule in
Proposition 11 in Appendix A and offer an intuitive description here. Given the payments for
the lowest type determined in Proposition 2, the allocation rule q(·) determines the slope of the
payment schedule T S(z) via the envelope theorem (cf. Milgrom and Segal, 2002). In order to
induce a consumer of type θ to consume a quantity q(θ), the slope of T S(z) at z = q(θ) must
equal the marginal utility of the consumer of type θ, equal to θv′(q(θ)). Because q(θ) ≥ qLF(θ)

and qLF(θ) is chosen so the marginal utility of consumption is c, the slope of T S(z) is always
bounded above by c (confirming that total subsidies are increasing in quantity) and strictly so
when H(θ) > θ.

5.2 How Do Optimal Subsidies Depend on Quantity Consumed?

We now describe the structure of the optimal subsidy mechanism in two benchmark cases: when
welfare weights are positively correlated with demand and when they are negatively correlated.

Negative Correlation. Suppose that demand and welfare weights are negatively correlated,
in that the social planner’s welfare weights are a decreasing function of the consumers’ types.
The distortion term of the virtual welfare at θ, which determines the social planner’s incentive
to distort θ’s consumption upwards or downwards, depends on the expected welfare weight of all
consumers with higher demand than θ. In this case, if E[ω(θ)|θ ≥ θ̂] ≤ α for any type θ̂, then
the decreasing property of ω implies that the distortion term is negative for all consumers with
types higher than θ̂ as well. As a result, the distortion term of the virtual welfare changes sign
at most once from positive to negative (as in Figure 5(b), for example), with the initial sign of
the distortion pinned down by the sign of E[ω] − α. This leads to the following structure of the
optimal subsidy mechanism.

Proposition 3 (optimal mechanism with negative correlation). Suppose ω is decreasing in θ.
Then:

(a) If the opportunity cost of funds is high, so E[ω] ≤ α, the social planner offers no subsidies,
and q∗(θ) = qLF(θ).
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(b) If the opportunity cost of funds is low, so E[ω] > α, there exists a type θα ∈ Θ such that

q∗(θ) =

D(c, J |[θ,θα](θ)) if θ ≤ θα

qLF(θ) if θ > θα.

If minω ≥ α, then θα = θ, otherwise θα < θ. This allocation is implemented using a free
endowment of the good to all consumer types and possibly additional discounts for
consumption up to a maximum level q∗(θα).

The proof of Proposition 3 is in Appendix B.
Consistent with Theorem 1, the social planner does not intervene when E[ω] ≤ α. The social

planner offers subsidies only if the opportunity cost of funds is low, which is exactly the case in
which the no lump-sum transfer constraint is binding. In that case, the social planner would prefer
to make a cash transfer to all consumers. The marginal prices as a function of quantity in each
case are illustrated in Figure 6.

quantity
laissez-faire

(a) E[ω] ≤ α

quantity
free discounted laissez-faire

(b) E[ω] ≥ α and minω < α

quantity
free discounted

(c) E[ω] ≥ α and minω ≥ α

Figure 6: Marginal prices as a function of quantity for decreasing welfare weights.

Positive Correlation. Suppose that demand and welfare weights are positively correlated, in
that the social planner’s welfare weights are an increasing function of the consumers’ types. In
that case, if for any type θ̂, we have E[ω(θ)|θ ≥ θ̂] ≥ α, then the distortion term is positive for all
consumers with types higher than θ̂. This means that the distortion term of the virtual welfare
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changes sign at most once from negative to positive (as in Figure 5(a), for example), with the
initial sign of the distortion pinned down by the sign of E[ω] − α. This leads to the following
structure of the optimal subsidy mechanism.

Proposition 4 (optimal mechanism with positive correlation). Suppose ω is increasing in θ.
Then:

(a) If the opportunity cost of funds is high, so E[ω] ≤ α, then

q∗(θ) =

qLF(θ) for θ ≤ θα

qSD(θ) for θ > θα,

where θα = θ if maxω ≤ α, or otherwise θα satisfies E[ω | θ ≥ θα] = α. The optimal
mechanism is implemented by increasing subsidies for consumption levels z > qLF(θα) when
θα < θ.

(b) If the opportunity cost of funds is low, so E[ω] > α, q∗(θ) = qSD(θ), implemented by subsidies
for all levels of consumption.

The proof of Proposition 4 is in Appendix B.
In this case, the social planner intervenes whenever maxω > α, offering subsidies for

consumption beyond a certain minimum level of consumption (possibly the lowest level of
consumption, q∗(θ), namely when E[ω] > α). When E[ω] < α and maxω > α, the (NLS)
constraint is slack, and the social planner offers in-kind subsidies when she would not otherwise
offer cash transfers. This is because only consumers with types higher than the θα defined in
Proposition 4 receive in-kind subsidies, and the social planner places a higher average welfare
weight on those types than the cost of public funds. The marginal prices as a function of
quantity are illustrated in each case in Figure 7.

5.3 When Does The Planner Want To Restrict Topping Up?

As we discussed in Section 3.2, it may be possible for the social planner to restrict recipients
in some subsidy programs from topping up in the private market. The question of whether to
restrict subsidy recipients from participating in private markets has arisen in many real-world
subsidy programs. For example, driven by worries about disparities in educational access linked
to wealth and socioeconomic privilege, China introduced stringent regulations that made it difficult
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quantity
laissez-faire

(a) maxω ≤ α

quantity
laissez-faire discounted

(b) E[ω] ≤ α and maxω > α

quantity
free discounted

(c) E[ω] > α

Figure 7: Marginal prices as a function of quantity when demand is positively correlated with need.

for private tutors to continue operating (Palmer, 2021). As a result, consumers are no longer able
to top up their educational consumption through private tutoring and are left to choose between
public or private school options. As another example, the German health insurance system requires
citizens to choose private or public health insurance coverage, and consumers opting into the
private program find it difficult to switch back to the public system (Schmidt-Kasparek, 2023).
Similarly, recipients of certain health insurance subsidies called Cost-Sharing Reductions under
the Affordable Care Act are limited to consumers selecting “silver” health insurance plans and
become ineligible for the subsidies if they top up to a higher-coverage “gold” plan (Healthcare.gov,
2024).

Restricting topping up reduces the set of constraints facing the social planner to (IC), (NLS)
and (IR). Whereas the (LB) constraint in this paper implies that we need only enforce the
(IR) constraint for θ to ensure that it is satisfied for all types (as we show in Appendix A), that
simplification does not apply in the setting without topping up. Instead, we show in our companion
paper (Kang and Watt, 2024) that the (IR) constraint takes the form of a majorization constraint
on the allocation rule, requiring that

U +

∫ θ

θ

v(q(s)) ds ≥ ULF +

∫ θ

θ

v(q(s)) ds for all θ ∈ [θ, θ̄].

In our companion paper, we show that—in the case ω and θ are positively correlated—the optimal
subsidy mechanism with no topping up satisfies the stricter topping up constraint (LB). As a
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result, there is no benefit to restricting topping up in the case of positive correlation. This means
that a positive correlation between demand and welfare weights not only ensures that in-kind
subsidies are self-targeting, but also reduces the need to enforce private market restrictions on
consumers.

On the other hand, when ω and θ are positively correlated, the optimal subsidy mechanism
with no topping up improves over the laissez-faire whenever maxω > α. As a result, whenever
maxω > α > E[ω], the social planner strictly prefers the mechanism with no topping up to the
mechanism identified in this paper. Intuitively, if the social planner can prohibit topping up, she
can offer a subsidy tied to low levels of consumption, and, as long as that subsidy is not too
generous, high-demand consumers would be unwilling to report a low type to receive the subsidy
without being able to top up in the private market.

5.4 How Do Optimal Subsidies Depend on Market Primitives?

We now study the comparative statics of the optimal subsidy program in the economic primitives
of the market. In particular, we will study the effect of three changes on the optimal subsidy
program: (a) a pointwise increase in ω or a decrease in α, corresponding to a secular increase in
the social planner’s desire to redistribute to each consumer, (b) a decrease in ω in the majorization
order, corresponding to increased positive correlation between ω and θ, and (c) a change in the
marginal cost of production c or the consumer’s preferences over consumption v.

While we have framed these questions in terms of changes in economic primitives, the results
in this section also shed light on subsidy choices not explicitly included in our model, including
product choice, eligibility restrictions and costly screening. We briefly touch on these questions in
this section, but explore this perspective further in Section 7.2 below.

Change in Preferences for Redistribution to All Types. We first study the effect of an
increase in the social planner’s preference to redistribute to all consumer types, as may be caused
by a change in government.

Proposition 5 (increasing preferences for redistribution). Suppose that there is a shift in the
preference for redistribution from ω to ω̃ with ω̃(θ) ≥ ω(θ) for all θ ∈ Θ, and/or a reduction in
the opportunity cost of funds from α to α̃ < α. Then, the optimal subsidy mechanism leads to a
higher total weighted surplus and is more generous to recipients, in that:
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(a) each consumer’s subsidy type increases,16 to H̃(θ) ≥ H(θ),

(b) the set of subsidized consumers increases (in the sense of set inclusion),

(c) each consumer’s total allocation increases, so q̃ ∗(θ) ≥ q∗(θ),

(d) the total subsidy received by each consumer increases, and

(e) each consumer is better off overall, so Ũ∗(θ) ≥ U∗(θ).

We prove Proposition 5 in Appendix C.6.
Intuitively, an increased preference for redistribution causes the virtual welfare of each type

to increase to J̃(θ) > J(θ), resulting in a stronger preference for the social planner to distort
consumption all types upwards. Proposition 5 establishes that this change leads the social planner
to increase the subsidy and consumption distortion of existing subsidy recipients (the intensive
margin) and to subsidize types that did not previously receive subsidies (the extensive margin),
as illustrated in Figure 8 (separately for the case in which ω is decreasing in θ and when it is
increasing).

θ

θ
θ

θ

(a) Effect of an increase in the virtual surplus
when ω is decreasing in θ.

θ

θ
θ

θ

(b) Effect of an increase in the virtual surplus
when ω is increasing in θ.

subsidy type H(θ) virtual welfare J(θ)
lower bound θ

subsidy type H̃(θ) virtual welfare J̃(θ)

Figure 8: Effects of a change in the virtual surplus on the subsidy type

16 In this section, we use the word “increase” to refer to weak improvements: that is, when we say that a variable
x “increases,” its new value x̃ satisfies x̃ ≥ x.
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This comparative static also sheds light on differences in the optimal subsidy mechanism for
different groups of consumers with the same demand for the good. Holding all else equal,
Proposition 5 suggests that the social planner and eligible consumers both prefer subsidies
offered to groups of consumers with higher welfare weights as a function of demand.

Changing Correlation We now consider the effect on the optimal subsidy mechanism of an
increase in the correlation between ω and θ, leaving E[ω] unchanged. Such a change in preferences
might also be caused a change in government, with the social planner assigning stronger welfare
weights to lower- or higher-demand consumers.

Formally, we study the effect of a decrease in ω(·) in the majorization order (cf. Hardy,
Littlewood and Pólya, 1934; Kleiner, Moldovanu and Strack, 2021). Welfare weights ω̃ are
majorized by ω if for all θ̂ ∈ Θ, we have

E[ω̃(θ) | θ ≥ θ̂] ≥ E[ω(θ) | θ ≥ θ̂],

and E[ω̃] = E[ω]. In other words, the social planner places more weight on high-demand consumers
under welfare weights ω̃ than ω. A decrease in the majorization order leads to a pointwise increase
in the average welfare weight above any type, implying a pointwise increase in the distortion term
and thus virtual welfare, as illustrated in Figure 9.

ω̃(θ)

ω(θ)

θ θ

∫ θ

θ
ω(θ) dF (θ)

θ θ

∫ θ

θ
ω̃(θ) dF (θ)

Figure 9: Increasing interdependence: ω̃ majorized ω, leading to a decrease in the distortion term.

A similar analysis as for Proposition 5 implies the following effect of increasing correlation
between demand and need on the optimal subsidy mechanism.

Proposition 6 (effect of changing interdependence). Suppose that ω̃ is majorized by ω. Then,
the total weighted surplus is greater and the optimal subsidy mechanism is more generous given ω̃

than ω, in that:
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(a) each consumer’s subsidy type increases, to H̃(θ) ≥ H(θ),

(b) the set of subsidized consumers is larger (in the sense of set inclusion),

(c) each consumer’s total allocation increases, so q̃ ∗(θ) ≤ q∗(θ),

(d) the total subsidy received by each consumer increases, and

(e) each consumer’s utility increases, so Ũ∗(θ) ≤ U∗(θ).

We prove Proposition 6 in Appendix C.6.
This comparative static also allows us to compare the optimal subsidy mechanisms for different

products with the same demand system but different relationships between demand and social
preferences. Holding all else equal, Proposition 6 suggests that the social planner and the average
eligible consumer prefer subsidies for goods for which demand is more positively correlated with
welfare weights.

Changes in Demand or Costs. Finally, we study an increase in the laissez-faire demand for
the good, as might be caused by a reduction in the marginal cost of the good to c̃ < c, say, or
by a change in the valuation function v to a new valuation function ṽ with ṽ ′(q) ≥ v′(q) for each
q ∈ [0, A].

Neither change affects the virtual welfare. As a result, they do not affect the calculation
of the subsidy type, which does not depend on the cost or the valuation function. Intuitively,
the increased demand or reduced cost of the good does not change the designer’s preferences to
redistribute utility between agents, which means that the set of subsidized types is unchanged.
However, it does increase the social planner’s net benefit from each unit allocated to a consumer,
so the optimal subsidy and allocation rule changes, leading to the following.

Proposition 7 (effect of demand increase). Suppose that there is an increase in the laissez-faire
demand for the good caused by a reduction in the cost c or an increase in the marginal utility
of consumption v′. Then, the total weighted surplus of the optimal subsidy mechanism increases,
the set of subsidized types is unchanged, and the total allocation and consumer surplus of each
consumer increases.

We prove Proposition 7 in Appendix C.6.
Holding all else equal, Proposition 7 suggests that the social planner prefers to subsidize goods

with lower production costs or higher marginal values for consumers.
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6 Extensions

In this section, we study several extensions of our baseline model to incorporate additional
important considerations for subsidy design in some market.

In the first extension, we study the effect of subsidies on prices in the private market.
Imperfectly elastic supply can be readily incorporated into our framework by using the subsidy
types we calculated above to determine a “subsidized demand curve” and determining the
intersection of supply and demand.

In the second extension, we study the effect of taxation programs on the subsidies chosen by the
social planner. The existence of exogenous taxation allows the social planner to implement more
allocation rules without distortion relative to the efficient consumption benchmark, which increases
the weighted surplus achievable via subsidies. When the planner has some limited influence over
tax levels, she trades off distortions caused by taxation against improvements in subsidy targeting.

Finally, we consider extensions of our model that endogenize the welfare weights in the social
planner’s redistributive objective.

6.1 Equilibrium Effects

Until now, we have assumed that introducing the subsidy has no effect on the price of the good
in the private market, even though the total consumption—and therefore total production of the
good in equilibrium—is increased by the subsidy program. While perfect elasticity of supply may
be an appropriate first-order approximation in some markets, the social planner may need to
account for the equilibrium effect of the subsidy program on the price of the good.

As we discussed in Section 5.4, an increase in the private market price has two effects on the
subsidy design problem: it raises the cost of each unit of subsidized consumption (which, alone,
would reduce the optimal subsidy offered by the social planner), but it also reduces the extent of
topping up by consumers (which slackens the topping up constraint for the social planner).

To incorporate these effects, we now suppose that there is a strictly convex and differentiable
industry cost function C : [0, A] → R, where C(Q) is the total cost to all suppliers of producing Q =∫
Θ
q(θ) dF (θ) units of the good. We maintain the assumption that the industry is competitive, so

that this cost function leads to an industry supply curve S(p) = maxQ∈[0,A] [pQ− C(Q)], and write
the inverse supply function as S−1(Q) (which is well-defined as a consequence of the differentiability
and strict convexity of C).

As discussed above, a changing price in the private market affects each consumer’s ability to
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top up his consumption of the good. We capture this possibility in revised incentive
compatibility constraints and individual rationality constraints. For any mechanism (q, t), let
p = S−1

(∫
Θ
q(θ) dF (θ)

)
be the equilibrium price of the good induced by the mechanism, then

the revised private market constraint is

for all θ ∈ Θ, q(θ) ≥ D (p, θ) , (PM’)

and the revised individual rationality constraint is

for all θ ∈ Θ, θv(q(θ))− t(θ) ≥ max
q̂∈[0,A]

[θv(q̂)− pq̂] . (IR’)

Proposition 8 (optimal subsidy with equilibrium effects). The allocation rule solving

max
(q,t)

∫
Θ

[
ω(θ) [θv(q(θ))− t(θ)] + αt(θ)

]
dF (θ)− αC

(∫
Θ

q(θ) dF (θ)

)
,

such that (q, t) satisfies (IC), (IR’), (NLS) and (PM’),

is characterized by

q∗(θ) = D (p,H(θ)) , and p = S−1

(∫
Θ

q∗(θ) dF (θ)

)
,

where H(θ) is defined as in Theorem 2.

The proof of Proposition 8 is in Appendix C.7. Note that the definition of the subsidy type
H(θ) is unchanged compared to its definition in Theorem 2. Proposition 8 implies that the optimal
allocation rule can be found by constructing a subsidized demand curve

D(p) =

∫
Θ

D (p,H(θ)) dF (θ)

and identifying its intersection p∗ with the industry supply curve, determining the competitive
market price, as illustrated in Figure 10. Each type θ is then assigned an allocation equal to the
demand of an agent with type H(θ) at the resulting price p∗. Finally, payments are determined
via the taxation principle, with the payment of the lowest type set by either the modified (IR’)
constraint at the prevailing price (when E[ω] < α) or the no lump-sum transfers constraint (NLS)
(when E[ω] ≥ α).
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private
market
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subsidized demand curve∫
ΘD (p,H(θ)) dF (θ)

Figure 10: Illustrating the Subsidized Demand Curve with Equilibrium Effects

6.2 Taxation of the Private Market

In this section, we discuss the possibility of taxation in the private market. Returning to the
perfectly elastic supply setting, we first suppose that the social planner levies an exogenously
chosen tax on consumption in the private market and show that this increases weighted total
surplus by slackening the constraints in the subsidy design problem. We then discuss the
implications of that result for a model in which the social planner can choose the tax level while
facing a cost of higher taxation in the private market.

Exogenous Taxation Suppose that an exogenously-set tax τ is applied to consumption in the
private market, so consumers face a price (1 + τ)c for each unit of topping up. The exogeneity of
the tax may result from the tax level being chosen by a different government agency than the one
offering the subsidy. We maintain the assumption that the social planner has access to an equally
efficient production technology as the private market,17 so the subsidy design problem takes the
form

max
(q,t)

∫
Θ

[
ω(θ) [θv(q(θ))− t(θ)] + α [t(θ)− cq(θ)]

]
dF (θ),

subject to (IC), (NLS), an individual rationality constraint incorporating the tax τ ,

θv(q(θ))− t(θ) ≥ max
q∈[0,A]

[θv(q)− c(1 + τ)q] , (IRt)

17 Otherwise, if the social planner must pay the tax on the production of subsidized units, the subsidy design
problem is the same as the baseline model with the price replaced by c(1 + τ).
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and a lower-bound constraint incorporating the tax τ

q(θ) ≥ D((1 + τ)c, θ). (LBt)

Compared to the baseline subsidy design problem studied in this paper, the social planner faces
less restrictive individual rationality and lower-bound constraints, allowing her to implement a
larger set of allocation rules. Because the objective is the same, exogenous taxation allows the
social planner to offer more effective redistribution using in-kind subsidies. Intuitively, exogenous
taxation helps the social planner approach the shutdown benchmark in which it has access to both
tax and subsidy instruments.

The optimal subsidy mechanism is computed similarly to the baseline model, as described
below.

Proposition 9 (optimal subsidy with exogenous taxation). In the presence of an exogenous tax
τ on private consumption, the optimal subsidy allocation is

q∗(θ) = D(c,Hτ (θ))

where Hτ (θ) = HT
τ (θ) and

HT
τ (θ) =

 θ
1+τ

if J[θ,θ](θ) ≤ θ
1+τ

,

J(θ) otherwise.

We prove Proposition 9 in Appendix C.7.

Costly Taxation Now suppose the taxation level τ may be chosen by the social planner. As
we discussed in Section 2.4, giving the social planner unconstrained power to set the tax on
private consumption makes it possible for her to implement the shutdown benchmark. However,
in practice, implementing a tax on the private market would impose costs on consumers outside
the subsidy program, which the social planner may account for in the joint tax and subsidy design
problem. Supposing that there is a convex cost Γ(τ) associated with taxation in the private
market, the social planner now solves

max
(q,t,τ)

∫
Θ

[
ω(θ) [θv(q(θ))− t(θ)] + α [t(θ)− cq(θ)]

]
dF (θ)− Γ(τ),
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subject to (IC), (NLS), (IRt) and (LBt). In that case, the optimal subsidy allocation is determined
as in Proposition 9, where the tax level τ ∗ is chosen to equate the marginal benefits of improved
subsidy targeting in the subsidized market against the marginal cost of taxation in the private
market. As a result, many of the main features of the optimal subsidy mechanism derived in
Section 4 continue to apply to the setting with costly taxation of the private market.

6.3 Budget Constraints and Endogenous Welfare Weights

In the baseline model, we have taken as given the weights ω the social planner assigns to consumer
surplus, as well as the weight α assigned to the cost of subsidy spending. We now discuss possible
microfoundations for each of these weights, allowing them to be determined endogenously in the
subsidy design problem while maintaining the qualitative features of the optimal mechanisms.

The opportunity cost of subsidy spending, α, can be interpreted as the Lagrange multiplier of
the budget constraint in a related problem. In particular, suppose the planner seeks to maximize
weighted consumer utility

max
(q,t)

∫
Θ

[ω(θ)v(q(θ))− t(θ)] dF (θ),

subject to (IC-T), (IR), (NLS), and the additional constraint∫
Θ

[cq(θ)− t(θ)] dF (θ) ≤ B,

where B is the social planner’s total budget for subsidy spending. In that case, convex duality
implies there exists a Lagrange multiplier α∗ such that the optimizer of that budget-constrained
program is the same as the optimizer of (SUB) given weight α∗.

A microfoundation for the welfare weights ω(θ) was offered by Pai and Strack (2024) as the
expected marginal value for money of a consumer with concave preferences over money. In
particular, suppose that consumers have two dimensions of private information I and θ, with a
concave utility function

U(θ) = φ(θv(q(θ)) + I − t(θ)),

for a strictly concave and twice-differentiable φ : R → R. Suppose that the social planner solves

max
(q,t)

∫
Θ

[ω(θ)U(θ)− α[cq(θ)− t(θ)]] dF (θ),

subject to (IC-T), (IR), and (NLS). Then by the same argument as offered by Pai and Strack
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(2024), the optimal mechanism (q∗, t∗) in that problem is also the optimal mechanism of the
program (SUB) with endogenously-determined welfare weights ω∗(θ) = EI [ω(θ)φ

′(θv(q(θ)) + I −
t(θ)) | θ].

7 Discussion

In this section, we discuss the implications and limitations of our findings for subsidy programs
observed in practice. Specifically, we consider applications of our results to three markets
subsidized by various governments worldwide: food assistance programs, public transit, and
pharmaceuticals. We also discuss the implications of our results for policy decisions not
explicitly incorporated in the model, including the choice of product for subsidization, eligibility
criteria and ordeals.

7.1 Implications of Our Results for Practical Subsidy Design

Food Assistance Programs. In the United States in 2021, the Supplemental Nutrition
Assistance Program (SNAP, more commonly known as food stamps), provided $111 billion in
food assistance to over 41 million Americans (Center on Budget and Policy Priorities, 2021).
The program primarily targets families with children, older adults, and people with disabilities,
with eligibility generally requiring a household to have a gross income below 130% of the federal
poverty line.18 SNAP benefits are capped monthly and delivered via Electronic Benefit Transfer
(EBT) cards, which function like debit cards and can be used at authorized retailers to purchase
food.

Even among consumers eligible for SNAP, the demand for food (and especially higher-quality
food items) is likely to be positively correlated with socioeconomic status. Applying our model with
decreasing welfare weights, we would expect the optimal subsidy mechanism for food consumption
to be structured so that subsidies are available for consumption up to a certain level of need, beyond
which additional consumption is unsubsidized. This is precisely how food stamps are designed:
they cover a fixed amount of spending on food and are designed to allow—if not expect—recipients
to top up their subsidized consumption in the private market.

Food assistance programs are also widely offered in developing economies, with an estimated 1.5

18 At times, the eligibility rules and subsidy levels for food stamps have been a subject of debate. For example, in
2013, the program was criticized for changes that led to more qualifying families receiving less assistance, see
Severson and Hu (2013).
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billion people worldwide covered by food subsidies, including large programs in India, Indonesia,
Egypt, and Sri Lanka (Alderman et al., 2017). Often, these programs cover basic staples, like rice,
coarse bread and cassava, consumed disproportionately by the poor (Mackenzie, 1991). In those
cases, our model with positive correlation between demand and need may be most relevant, and
our results predict that subsidies are sufficiently generous that consumers do not supplement their
consumption of the good in the private market.

Public Transit Fare Caps. Public transit subsidies are a common policy tool used by cities
and countries around the world to promote affordable access to transportation. Demand for public
transit often varies by demographic group. In the United States, for example, while about 5% of all
workers reported commuting via public transportation in the 2019 American Community Survey,
these commuters were more likely to be women, younger workers, and people of color (Burrows,
Burd and McKenzie, 2021). Outside of seven “transit-heavy” metropolitan areas identified by
Burrows et al. (2021) (including New York, San Francisco, and Washington D.C.), lower-income
individuals were also much more likely to rely on public transportation, with 44.4% of transit
commuters earning less than $25,000 annually.19

Applying our results to this context,20 if the social planner places more weight on demographic
groups relying heavily on public transportation, we would expect higher subsidies for high-demand
users of public transportation, including more significant discounts for consumers who consume
public transit more intensively. In practice, various cities offer transit subsidies toward targeted
demographic groups, including New York City’s “Fair Fares” program, which offers half-price rides
for lower-income New Yorkers (City of New York, 2024). Many public transportation authorities
also offer “fare capping,” where public transit is free to consumers after a certain number of
paid trips or level of spending within a day, week or month.21 These fare capping programs are
consistent with the volume discounts in the optimal subsidy mechanism in the positive correlation
case, identified in Section 5.22

19 In larger cities, however, Burrows et al. (2021) observe that there is also a notable share of higher-income
individuals using public transit, illustrating complexity in transit usage patterns across income groups.

20 Because public transport authorities can typically control the price of the public transit tickets used by consumers
to top up subsidized consumption, our model including costly taxation in Section 6.2 may be most relevant here.
The price of topping up tickets may be constrained in practice by the requirement that public transit tickets be
available for tourists and occasional riders without enrolling in the subsidy program or by the social planner’s
concern for inefficiencies created for consumers ineligible for the subsidy program.

21 See, e.g., the fare capping schemes in New York (Metropolitan Transportation Authority, 2024), London
(Transport for London, 2024), Sydney (Transport for NSW, 2024), and Hong Kong (Hong Kong Special
Administrative Region Government, 2024).

22 We note that zero marginal prices in the payment schedule (as in fare capping) arise in the limit as q → ∞ of
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Pharmaceutical Subsidies Some public health programs include pharmaceutical subsidies to
ensure affordable access to medicines, particularly for vulnerable populations. To apply our model
to the pharmaceutical market, we interpret the welfare weights as representing social priorities,
which may place a greater weight on the sick, elderly, or disabled. Since the demand for healthcare
and medicines is likely correlated with these social priorities, our results for positive correlation
are most relevant and suggest that the social planner would offer greater subsidies to individuals
with a high demand for pharmaceuticals.

These insights are reflected in the design of various pharmaceutical subsidy programs
worldwide. For example, in the United States, both Medicaid and Medicare Part D provide
pharmaceutical coverage for lower-income individuals and seniors, who tend to have greater
demand for medicine (Centers for Medicare & Medicaid Services, 2024a,b). Similarly, Australia’s
Pharmaceutical Benefits Scheme (PBS) requires all consumers to pay out-of-pocket fees for
pharmaceuticals but offers reduced fees for vulnerable groups, such as pensioners and welfare
recipients. The Australian PBS also includes a “Safety Net,” capping total out-of-pocket
expenditure on pharmaceuticals per annum, after which additional pharmaceutical purchases are
free (Australian Government Department of Health and Aged Care, 2024). Other countries,
including New Zealand, Sweden, and Norway, have similar pharmaceutical spending caps.23

These caps are reminiscent of the optimal mechanism derived in Section 5 for positive correlation
between demand and need.

7.2 Implications for Product Choice and Eligibility Restrictions

In our model, we treat the product subsidized and the set of eligible consumers as outside the
social planner’s control. However, in some real-world settings, the subsidy designer can choose
which products to subsidize and to whom subsidies are offered, based on observable consumer
characteristics. Although these decisions are not explicitly integrated into our model, our results
in this paper have several implications for such choices.

First, when welfare weights decrease in demand, which we expect to be a relevant assumption
for many goods, the social planner only provides subsidies in the optimal mechanism if the average
welfare weight exceeds the opportunity cost of funds. As a result, for such goods, restrictive
eligibility criteria may be necessary to justify in-kind subsidy programs. This may explain why

the optimal subsidy schedule when F has decreasing hazard rate and ω is increasing in θ.
23 See, e.g., New Zealand’s Prescription Subsidy Scheme (New Zealand Government, 2024), Sweden’s “high-cost

protection” (högkostnadsskydd) system (Nordic Council of Ministers, 2024), and Norway’s Frikort (Helsenorge,
2024).
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many subsidy programs observed in practice restrict eligibility for in-kind subsidies based on
observable characteristics, including income, family status, citizenship, and other factors. For
example, the U.S. government has tightened eligibility requirements for SNAP multiple times over
the program’s history.24 As another example, the Indonesian government has recently restricted
fuel subsidies to ride-share operators and owners of vehicles with smaller engines (The Jakarta
Post, 2024).

In contrast, when welfare weights increase with demand, the scope for redistribution is larger,
requiring only that the maximum welfare weight exceeds the opportunity cost of funds. This
reduces the need for explicit eligibility restrictions: instead, in-kind subsidy programs are
self-targeting, with the greatest benefits of the subsidy program accruing to the consumers who
purchase the largest quantities of the good. This may explain why public transit fare caps,
discussed above, typically lack stringent eligibility criteria.

Our results also inform product choice for subsidy designers: given a selection of products with
similar demand patterns, the social planner prefers to implement subsidies for goods with higher
correlation between demand and income. Extending beyond our model, this might involve trading
off a reduction in the desirability of the good against the ease of self-targeting the subsidy.

An example of this effect can be seen in the Egyptian Bread Subsidy Program, which subsidizes
baladi bread, a staple food in Egypt (Adams, 2000). Over time, the Egyptian government reduced
the quality of the subsidized bread by limiting the weight of the loaves and the type of wheat
used. Adams (2000) found that these changes may have been self-targeting, as poorer consumers
disproportionately consumed the subsidized coarse wheat bread, while wealthier consumers opted
for higher-quality unsubsidized alternatives.

Another way to restrict eligibility is through the imposition of “ordeals,” which are
non-monetary costs of accessing subsidy programs, including time-consuming application
processes and waiting lists. Ordeals can be effective when high welfare weight consumers face
lower ordeal costs (see, e.g., Nichols and Zeckhauser, 1982, Finkelstein and Notowidigdo (2019)).
Our results suggest that ordeals may also improve targeting by changing the joint distribution of
welfare weights and demand. For example, if high-welfare weight consumers tend to have low
ordeal costs independently of their demand for the good, this could improve the selection of
eligible consumers, benefiting the social planner and the average eligible consumer.

24 For example, the Personal Responsibility and Work Opportunity Reconciliation Act of 1996 and the Fiscal
Responsibility Act of 2023 both imposed stricter work requirements for SNAP recipients without children.
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8 Conclusion

Real-world subsidy programs often coexist with private markets for the same good. In this paper,
we show that a consumer’s ability to access those private markets to top up their consumption of
subsidized goods limits the redistributive power of the subsidy program. When consumers can top
up, the social planner must account for the fact that subsidies must increase in demand for the
good, which makes it easier to intervene when subsidy designers aim to redistribute toward higher-
demand consumers than when they want to redistribute toward lower-demand consumers. This
is likely why subsidy programs, in practice, often subsidize goods disproportionately consumed
by less-advantaged consumers and why subsidy programs for other types of goods typically have
narrow eligibility requirements.

While we have focused on subsidies designed by governments in the presence of private markets,
there is, in principle, no reason that the principal in the subsidy design problem we have studied
need be interpreted as a government agency or that the outside option as a competitive market.
For example, our methods could also be used to study subsidies offered by firms with market power
in the presence of a competitive fringe aiming to win market share from rivals. Similar methods
may also be relevant to analyze competing principals in a mechanism design setting. Expanding
the methods in this paper along these lines is a promising direction for future research.
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A Derivation of the Optimal Mechanism

In this section, we derive Theorem 2, and a generalization that permits more complex lower-
bound constraints. We first reformulate the (IC-T) constraint to obtain a convex program and
then discuss the generalization we study in this section. We then derive the optimal allocation
rule for that generalized convex program and discuss our proof approach in the context of the
mechanism design literature.

A.1 Reformulating the Subsidy Design Problem as a Convex Program

Proposition 10 (reformulating the subsidy design problem). The subsidy design problem (SUB)
is equivalent to the following convex program:

max
q:Θ→[0,A]

α

∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ) + (terms independent of q), (OPT)

such that q is nondecreasing and satisfies for all θ ∈ Θ, q(θ) ≥ qLF(θ),

where J(θ) is the virtual welfare, defined by

J(θ) = θ +

∫ θ

θ
[ω(s)− α] dF (s) + max {E[ω]− α, 0} · θδθ(θ)

αf(θ)
,

and δθ(θ) is the Dirac delta (point mass) centered at θ.

Proof. Using Proposition 1, we have that the subsidy design problem takes the form

max
(q,t)

∫
Θ

{
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

−α [cq(θ)− t(θ)]︸ ︷︷ ︸
total costs

}
dF (θ), (SUB)

such that (q, t) satisfies (IR), (IC), (LB) and (NLS).

We apply standard mechanism design techniques to eliminate various constraints and express
(SUB) in terms of the allocation rule q.

First, we use Myerson’s (1981) Lemma to replace the (IC) constraint with the requirement
that q be a nondecreasing function of θ, writing Q for the set of nondecreasing functions on Θ.

Second, given the (IC) and (LB) constraints, it suffices to enforce the (IR) constraint only for
the lowest type, that is, to ensure that U := θv(q(θ)) − t(θ) ≥ ULF(θ). To see that, note that
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(LB) implies v(q(θ)) ≥ v(qLF(θ)) because v is increasing, which when combined with U ≥ ULF(θ)

implies that

U +

∫ θ

θ

v(q(θ)) dθ ≥ ULF(θ) +

∫ θ

θ

v(qLF(θ)) dθ,

so U(θ) ≥ ULF(θ) by the Milgrom and Segal (2002) envelope theorem.
Third, we again apply the envelope theorem to express payments in terms of the allocation

rule, allowing us to rewrite the social planner’s optimization program as

max
(q,t)

{
(E[ω]− α)U + α

∫
Θ

[(
θ +

∫ θ

θ
[ω(s)− α] dF (s)

αf(θ)

)
v(q(θ))− cq(θ)

]
dF (θ)

}
,

such that q ∈ Q, U ≥ ULF(θ), and (q, t) satisfies (NLS) and (LB).

Fourth, we argue that—given the (IC) constraint—it suffices to enforce (NLS) only for the
lowest type θ. To see this, note that for any two types θ, θ′ ∈ Θ,

t(θ′)− t(θ) =

[
θ′v(q(θ′))− U(θ)−

∫ θ′

θ

v(q(s)) ds

]
−
[
θv(q(θ))− U(θ)−

∫ θ

θ

v(q(s)) ds

]
= θ′v(q(θ′))− θv(q(θ))−

∫ θ′

θ

v(q(s)) ds

=

∫ θ′

θ

sv′(q(s)) dq(s),

where the last equality employs integration-by-parts for the Lebesgue-Stieltjes integral. This
expression is nonnegative for θ ≥ θ′, implying that the total payment is increasing in θ. As a
result, if t(θ) is nonnegative, so is the payment made by all higher types.

Finally, fixing q, we note that when the opportunity cost of funds is low (so E[ω] > α), the
social planner prefers to implement q using a payment rule t that makes the lowest type’s utility
U as large as possible (making the additive term outside the integrand in the objective above
as large as possible), which entails choosing t(θ) = 0, so the (NLS) constraint binds. Because
U = θv(q(θ)) depends on the choice of q, we incorporate it into the integrand of the objective as
a point mass at θ. Conversely, when the cost of funds is high (so E[ω] < α), the social planner
prefers a payment rule t making U as small as possible, which entails choosing t(θ) such that the
(IR) constraint binds and U = ULF(θ). Finally, if E[ω] = α, the social planner is indifferent over
transfer rules implementing q.

These findings allow us to write the mechanism design problem as follows:
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(a) If the opportunity cost of funds is low, so E[ω] > α:

max
q∈Q: q≥qLF

α

∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ), (OPT-L)

where

J(θ) = θ +

∫ θ

θ
[ω(s)− α] dF (s) + (E[ω(θ)]− α)θδθ

αf(θ)
.

(b) If the opportunity cost of funds is high, so E[ω] ≤ α:

max
q∈Q: q≥qLF

α

∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ) + (E[ω]− α) θv(qLF(θ)), (OPT-H)

where

J(θ) = θ +

∫ θ

θ
[ω(s)− α] dF (s)

αf(θ)
.

These two expressions for virtual welfare differ by a point mass at θ included in the expression for
virtual welfare when the opportunity cost of funds is low (corresponding to the (NLS) constraint
binding for θ, so the designer wishes to allocate some quantity of the good to all types for free).
The objectives otherwise differ only in an additive term independent of q that appears in (OPT-H).

Putting these expressions together leads to the convex program in the statement of
Proposition 10.

A.2 Generalizing (OPT) and Theorem 2

In this subsection, we introduce a generalization of the (LB) constraint that requires q to exceed
pointwise an arbitrary continuous qL ∈ Q.25 For this purpose, in order to ensure that it is possible
to induce a consumer to consume at least qL units of the good, we assume in this section an Inada
condition on v: that limz→∞ v′(z) = 0 and limz→0 v

′(z) = +∞.
Putting these assumptions together, we study the more general problem than (OPT), given by

max
q:Θ→[0,A] s.t.

q is non-decreasing

∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ) subject to ∀θ ∈ Θ, and q(θ) ≥ qL(θ). (P)

In this section, we write D(θ) for the demand of type θ (suppressing the price c, which is held
25 In fact, the restriction to Q is without loss of generality, because even if qL /∈ Q, any feasible q must be pointwise

greater than the monotone envelope of qL (the least monotone function pointwise greater than qL.
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fixed in this section), and let D−1(q) be its inverse, i.e., D−1(q) = inf{θ ∈ Θ|d ≥ q for d ∈ D(θ)},
which is well-defined by the strict monotonicity of v′ and the Inada condition. We write L(θ) =

D−1(qL(θ)), which is the type demanding qL(θ) units of the good in the laissez-faire economy at
price c. We note that L is monotone and continuous by the monotonicity and continuity of qL

and D (and therefore D−1).
We now state the generalization of Theorem 2 characterizing the solution to (P).

Theorem 2′. The solution to (P), q∗ : Θ → [0, A], satisfies

q∗(θ) = D(H(θ))

where

H(θ) =

L(θ) if L(θ) ≥ J |[θ,θ](θ),

J |[θ,κ+(θ)](θ) otherwise,

and
κ+(θ) = inf

{
θ̂ ∈ Θ : θ̂ ≥ θ, and L(θ̂) ≥ J |[θ,θ̂](θ̂)

}
or θ if that set is empty..

Finally, if L is continuous on intΘ, then q∗ is continuous as well.

Note that Theorem 2 follows as its consequence because if qL(θ) = qLF(θ), the function L(θ)

defined above is just θ.

Proof. We break the proof of Theorem 2′ into a number of steps. We first present some
preliminary lemmata establishing properties of the ironing operator. We then use those lemmata
to establish the equivalence of the various expressions for H in Theorem 2′, and the feasibility of
the expression for q∗ in (P). Finally, we establish the optimality of q∗ in (P) using variational
inequality arguments.

A.3 Preliminary Ironing Lemmata.

To state our preliminary lemmata on ironing, we require additional notation. Define the F -
weighted average of ϕ on [θ1, θ2] with θ1 ≤ θ2 as follows

µ(θ1, θ2) =


∫ θ2
θ1

ϕ(s) dF (s)

F (θ2)− F (θ1)
if θ2 > θ1

ϕ(θ1) if θ2 = θ1.
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Recall that on any ironing interval [θ1, θ2] of ϕ, for all θ ∈ [θ1, θ2], we have ϕ(θ) = µ(θ1, θ2). In
this section, we will include the singleton [θ1, θ1] in our definition of an ironing interval, for which
this expression is also valid.

The first lemma describes the effect of “interrupting” an ironing interval—by which we mean
restricting attention to a subinterval—on the F -weighted average.

Lemma 1 (Interrupted Ironing). Let ϕ(θ) = c and let [θ∗1, θ
∗
2] be an ironing interval containing

θ, so µ(θ∗1, θ
∗
2) = c. Then for any θ1 ∈ [θ∗1, θ

∗
2], we have µ(θ1, θ

∗
2) ≤ c and for any θ2 ∈ [θ∗1, θ

∗
2], we

have µ(θ∗1, θ2) ≥ c.

Proof. This follows by definition of ironing as the convex envelope because
∫ θ2
θ∗1

ϕ(s) dF (s) ≥∫ θ2
θ∗1

c dF (s), so µ(θ∗1, θ2) ≥ c. Similarly, since
∫ θ1
θ∗1

ϕ(s) dF (s) ≥
∫ θ1
θ∗1

c dF (s) and
∫ θ∗2
θ∗1

ϕ(s) dF (s) =∫ θ∗2
θ∗1

c dF (s), we have
∫ θ∗2
θ1

ϕ(s) dF (s) ≤
∫ θ∗2
θ1

c dF (s), which implies µ(θ1, θ
∗
2) ≤ c.

We use this result to establish the following useful characterization of the ironing operator
(cf. Barlow et al., 1972; Robertson et al., 1988, who obtain a similar formula for a discrete ironing
operator arising in the study of isotonic regression).

Lemma 2 (max-min formula for ironing). For any ϕ : Θ → R and θ ∈ [θℓ, θh] ⊆ Θ, we have

ϕ|[θℓ,θh](θ) = max
θ1: θℓ≤θ1≤θ

min
θ2: θ≤θ2≤θh

µ(θ1, θ2).

Moreover, writing θ∗1 and θ∗2 for the solutions to that minimax problem, then [θ∗1, θ
∗
2] is a (possibly

singleton) ironing interval for ϕ|[θℓ,θh] containing θ.

Proof. Let ϕ(θ) = c and let θ̂1 and θ̂2 be the endpoints of the maximal ironing interval containing
θ.

We first show that θ∗1 ≥ θ̂1 and θ∗2 ≤ θ̂2. To see this, fix any θ1 ≤ θ, and suppose (for a
contradiction) that θ∗2 > θ̂2. We show that µ(θ1, θ̂2) < µ(θ1, θ

∗
2), contradicting the optimality of θ∗2.

By the monotonicity of ϕ, we have ϕ(θ∗2) = c′ > c. If θ∗2 is inside an ironing interval of ϕ, Lemma 1
implies that we may as well assume that θ∗2 is the right endpoint of that ironing interval, because
that reduces µ on the ironing interval and thus also on (θ1, θ

∗
2). But then by the monotonicity of ϕ,

we can write (θ̂2, θ
∗
2] as the union of intervals on which µ > c. But then removing the contribution

of each such interval would lower the value of µ, so µ(θ1, θ̂2) < µ(θ1, θ
∗
2). This implies that θ∗2 ≤ θ̂2.

The argument for θ∗1 ≥ θ̂1 is analogous.
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We can thus restrict attention to decision variables θ1 and θ2 within [θ̂1, θ̂2]. Fix any θ1, then
by Lemma 1, we must have that

min
θ≤θ2≤θ̂2

µ(θ1, θ2) ≤ µ(θ1, θ̂2) ≤ µ(θ̂1, θ̂2) = c.

But then
max

θ̂1≤θ1≤θ
min

θ≤θ2≤θ̂2

µ(θ1, θ2) ≤ c.

But this bound is obtained for any θ∗1, θ
∗
2 that are the endpoints of an ironing interval containing

θ, so that
max

θ1: θℓ≤θ1≤θ
min

θ2: θ≤θ2≤θh
µ(θ1, θ2) = ϕ|[θℓ,θh](θ),

as required.
On the other hand, if θ∗1 and θ∗2 are solutions to the minimax problem, we have µ(θ∗1, θ

∗
2) =

µ(θ̂1, θ̂2). But then by the construction of ϕ (as the slope of the convex envelope of coΦ), the
interval [θ∗1, θ∗2] is an ironing interval of ϕ containing θ as well.

The expression for the ironing operator as the solution of a minimax problem obtained in
Lemma 2 allows us to establish the monotonicity of the ironing operator in the domain of its
argument:

Lemma 3 (domain expansions for ironing). Let θ′ℓ < θℓ < θh < θ′h, then for all θ ∈ [θℓ, θh], we
have:

(a) ϕ|[θ′ℓ,θh](θ) ≥ ϕ|[θℓ,θh](θ), with strict inequality if and only if θℓ is in the interior of an ironing
interval of ϕ in [θ′ℓ, θh].

(b) ϕ|[θℓ,θ′h](θ) ≤ ϕ|[θℓ,θh](θ), with strict inequality if and only if θh is in the interior of an ironing
interval of ϕ in [θℓ, θ

′
h].

Lemma 3 states that expanding the ironing domain to the left can increase (but not decrease)
the value of the ironed function on the original domain, while expanding the ironing domain to
the right can only decrease its value.

Proof. By the max-min expression for ϕ|[θℓ,θh] in Lemma 2, it is clear that reducing θℓ to θ′ℓ < θℓ can
only increase the value of the ironed function at any θ (by expanding the set being maximized over)
and that increasing θh to θ′h > θh can only decrease the value (by expanding the set being minimized
over). On the other hand, if the objective value decreases strictly, the new optimizers must be in
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the expanded choice set (e.g., if θℓ decreases to θ′ℓ, the optimizer for θ1 must be in (θ′ℓ, θℓ)). But
then, (θ∗1, θ∗2) must be a (non-singleton) ironing interval containing θ in its interior.

A.4 Equivalent Expressions for H and Feasibility of q∗.

In this section, we establish the equivalence of the various expressions for H given in Theorem 2
and the feasibility of the resulting q∗ in (OPT).

Lemma 4 (equivalent representations of H and feasibility). The subsidy type H is nondecreasing,
satisfies for all θ ∈ Θ, H(θ) ≥ L(θ), and can equivalently be calculated as follows:

(a)

H(θ) =

L(θ) if L(θ) ≥ J |[θ,θ](θ),

J |[κ−(θ),κ+(θ)](θ) otherwise,
,

where κ−(θ) = sup
{
θ̂ ∈ Θ : θ̂ ≤ θ, and L(θ̂) ≥ J |[θ,θ̂](θ̂)

}
or θ if that set is empty.

(b) H = HT, where

HT(θ) =

L(θ) if L(θ) ≥ J |[θ,θ](θ),

J(θ) otherwise.

We introduce additional notation for the proof of Lemma 4. By the monotonicity of L(θ) and
the continuity of J |[θ,θ](θ), the type space Θ can be partitioned into alternating intervals within
which either (a) L(θ) ≥ J |[θ,θ](θ), or (b) L(θ) < J |[θ,θ](θ) in the interior of the interval. Call these
type (a) intervals and type (b) intervals, respectively. Write these intervals (intersecting only at
their endpoints) as Θ1,Θ2, ... so Θ = ∪iΘ

i and let intΘi = (θi−, θ
i
+).

Let

H̃(θ) =

L(θ) for θ in any type (a) interval Θi

J |[θi−,θi+](θ) for θ in any type (b) interval Θi,

matching the expression in part (a) of Lemma 4. To establish the equivalence of our expressions for
H, we need to show that H̃ = H = HT . Once we have proven those equivalent representations, to
establish feasibility of q∗, we need only establish that at least one of H̃, H, or HT are nondecreasing
and bounded below by L: this will imply that q∗ = D(H(·)) is nondecreasing and bounded below
by qL.
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Proof. We first show that H̃ = H. This is clear for any θ in a type (a) interval, so we need
only show for θ in type (b) intervals that H̃(θ) = J |[θi−,θi+](θ) = J |[θ,θi+](θ) = H(θ). By Lemma 3,
it suffices to show that θi− is not contained in an ironing interval in [θ, θi+] as this will imply
J |[θi−,θi+](θ) = J |[θ,θi+](θ), as required. Suppose otherwise, then there must exist an ironing interval
of J |[θ,θi+] containing θi− ending at some θ̂ ∈ Θi. Because θ̂ ∈ Θi, we must have that J |[θ,θi+](θ̂) ≥
L(θ̂) which implies J |[θ,θi+](θ

i
−) ≥ L(θ̂) ≥ L(θi−). But then for θ ≤ θi− contained in the same ironing

interval, we must have (by Lemma 3) that J |[θ,θ](θ) ≥ J |[θ,θi+](θ) ≥ L(θ̂) ≥ L(θ), which contradicts
the fact that θ is in a type (a) interval.

We now show that H̃ is continuous and nondecreasing in θ. These properties are immediate
within any interval Θi, but to show them across adjacent intervals, it suffices to show that the two
expressions for H̃ match at the meeting points of adjacent intervals. But by construction, for any
type (b) interval [θi−, θi+], we have J |[θ,θi−](θ

i
−) = L(θi−) and J |[θ,θi+](θ

i
+) = L(θi+), and then, by our

previous finding, we have that H̃(θi−) = J |[θi−,θi+](θ
i
−) = L(θi−), and H̃(θi+) = J |[θi−,θi+](θ

i
+) = L(θi+),

as required.
Thus, H̃ is nondecreasing and continuous, which implies that H̃ :=

∫ θ

θ
H̃(s) dF (s) is a convex

function. Our next goal is to show that H̃ is the convex envelope of HT :=
∫ θ

θ
HT (s) dF (s), which

by the uniqueness of the ironing HT will imply that H̃ = H.
To obtain that result, we first show that H̃ is a minorant of HT. To see this, note that within

any interval Θi, the function θ 7→
∫ θ

θi−
H̃(s) dF (s) is the convex envelope of θ 7→

∫ θ

θi−
HT(s) dF (s).

This means that for all θ ∈ Θi,
∫ θ

θi−
H(s) dF (s) ≤

∫ θ

θi−
HT(s) dF (s) with equality at θ = θi+. But

then, applying those facts from left to right, we obtain that H̃(θ) ≤ HT(θ) for all θ ∈ Θ, and that
H̃(θ) = HT(θ) for any θ at the endpoint of an interval. That implies that H̃ is a minorant of HT

on Θ.
Now suppose that there were a pointwise larger convex minorant of HT , say H′ (i.e., a convex

function satisfying HT ≥ H′ ≥ H with H′ ̸= H). Since H̃ = HT at the endpoint of each interval
Θi, H′ = HT there as well. So if H′(θ) > H̃(θ) for some θ ∈ Θ, it must be for some θ ∈ int(Θi).
But then H′|Θi would be a convex minorant of HT|Θi with H′|Θi > H̃|Θi , which would contradict
the fact that H̃|Θi is the convex envelope of HT|Θi . This implies that H̃ is the convex envelope of
HT, and so H̃ = H.

Finally, having shown that H̃(= H) is nondecreasing, for the feasibility of q∗ = D(c,H(θ)), we
need only show that for all θ ∈ Θi, H̃(θ) ≥ L(θ). This is clearly satisfied on each type (a) interval,
but within any type (b) interval, note by construction that J |[θ,θ](θ) ≥ L(θ). Since, by the above,
we have J |[θ,θ](θ) = J |[θi−,θ](θ), we have H̃(θ) ≥ L(θ) as well.
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A.5 Optimality of q∗.

Having established that q∗(θ) = D(H(θ), c) is feasible in (P), we now show that it is optimal.

Solving A Simpler Convex Program. To establish the optimality of q∗, we relate the solution
of (OPT) to the solution of a simpler mechanism design problem, for which the optimum is the
pointwise maximizer of the objective. In particular, we study the problem

max
q∈Q

∫
Θ

[H(θ)v(q(θ))− cq(θ)] dF (θ) subject to ∀θ ∈ Θ, q(θ) ≥ qL(θ). (OPT-H)

By the above, we have that q∗(θ) = D(H(θ)) is feasible in (OPT-H), and, by the definition of D,
it is also the pointwise maximizer of the objective in (OPT-H). Consequently, q∗ solves (OPT-H).

Relating the Optimality Conditions. We use the optimality of q∗ in (OPT-H) to demonstrate
its optimality in (OPT). The optimality condition of (OPT) may be written as a variational
inequality: for any other feasible q, we have that∫

Θ

[J(θ)v(q∗(θ))− cq∗(θ)] dF (θ) ≥
∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ). (VI)

Having already shown—via the optimality of q∗ in (OPT-H)—that for any feasible q∫
Θ

[H(θ)v(q∗(θ))− cq∗(θ)] dF (θ) ≥
∫
Θ

[H(θ)v(q(θ))− cq(θ)] dF (θ),

it suffices to sign the difference in these inequalities:∫
Θ

[J(θ)−H(θ)] [v(q∗(θ))− v(q(θ))] dF (θ) ≥ 0.

Signing the Difference in the Variational Inequalities. To that end, we rewrite the
previous inequality as∫
Θ

[
J(θ)−HT(θ)

]
[v(q∗(θ))− v(q(θ))] dF (θ)+

∫
Θ

[
HT(θ)−H(θ)

]
[v(q∗(θ))− v(q(θ))] dF (θ) ≥ 0,

and sign the terms in that sum individually.
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First, we establish that ∫
Θ

[HT(θ)−H(θ)]v(q∗(θ)) dF (θ) = 0.

Intuitively, that follows because H = HT, and on any interval where H ̸= HT, H is the F -average
of HT, and q∗ is constant, so v(q∗(θ)) may be moved outside the integrand. Formally, consider
any c ∈ imH, and let Θc := {θ ∈ Θ : H(θ) = c}. Because H = HT, either c = HT(θ) = H(θ) for
all θ ∈ Θc, or

∫
Θc
[HT(θ) −H(θ)] dF (θ) = 0. In either case, since v(q∗(θ)) is constant on Θc, we

have ∫
Θc

[HT(θ)−H(θ)]v(q∗(θ)) dF (θ) = v(q∗(θ))

∫
Θc

[HT(θ)−H(θ)] dF (θ) = 0,

so that integrating over all c ∈ imH obtains the required result.
Second, we show that for any feasible q∫

Θ

[H(θ)−HT(θ)]v(q(θ)) dF (θ) ≥ 0.

Intuitively, wherever H ̸= HT, HT is nonmonotone, and so if q is increasing, it tends to be larger
where HT is smaller. Formally, we calculate the integral as

[
v(q(θ))

∫ θ

θ

[H(s)−HT(s)] dF (s)

]θ=θ

θ=θ

−
∫ θ

θ

{
∂

∂θ
[v(q(θ))]

∫ θ

θ

[H(s)−HT(s)] dF (s)

}
dθ,

which is nonnegative because v(q(θ)) is increasing in θ for any feasible q and
∫ θ

θ
HT(s) dF (s) ≥∫ θ

θ
H(s) dF (s) for all θ ∈ Θ (with equality at θ and θ) since the latter (viewed as a function of θ)

is the convex envelope of the former.
Third, and finally, we show that for any feasible q∫

Θ

[J(θ)−HT(θ)][v(q∗(θ))− v(q(θ))] dF (θ) ≥ 0.

For this, we sign the two terms in the product. Because the target HT is chosen to either equal
J (in which case the first term is zero) or to equal the lower bound L(θ), we need only consider
the integrand where the lower-bound constraint is binding, which is when L(θ) ≥ J |[θ,θ](θ) and
HT(θ) = L(θ). But by Lemma 3, J |[θ,θ](θ) ≥ J(θ), so L(θ) ≥ J(θ), and thus [J(θ) − HT(θ)] is
nonpositive. For the second term in the product, where HT(θ) = L(θ), we have via Lemma 4
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that H(θ) = L(θ), so q∗(θ) = qL(θ). As a result, q∗(θ) = qL(θ) ≤ q(θ) for any feasible q. By the
monotonicity of v, we have that v(q∗(θ))− v(q(θ)) ≤ 0, so the integrand is nonnegative for all θ,
completing the proof.

A.6 Proof of Proposition 2 and the Optimal Payment Schedule

Returning now to the case in which L(θ) = θ, we derive the payment schedule associated with
the optimal mechanism. We first derive Proposition 2 which pins down the payment made by the
lowest type θ.

Proof. As shown in Appendix A.1 above, when E[ω] > α, the social planner benefits from making
U(θ) as large as possible, which implies that the (NLS) constraint binds for θ and the social
planner offers the initial q∗(θ) units of the good for free.

On the other hand, when E[ω] < α, the social planner benefits from making U(θ) as small as
possible, which implies that the (IR) constraint binds for θ. Because J(θ) < θ, we have H(θ) = θ,
so q∗(θ) = D(c, θ) = qLF(θ). The initial q∗(θ) units of the good are priced at c. More generally,
the payment schedule as a function of total quantity can be determined as follows.

When E[ω] = α, U(θ) does not enter the social planner’s objective and q∗(θ) = qLF(θ). As
a result, the social planner is indifferent between feasible payments for qLF(θ) units of the good,
which by the (NLS) and (IR) constraints imply 0 ≤ t(θ) ≤ cqLF(θ).

Proposition 11 (payment schedule). The following subsidized payment schedule implements the
optimal subsidy allocation for quantities z ∈ im q∗:

T S(z) =



∫ z

q∗(θ)

(θ∗)−1(ẑ)v′(ẑ) dẑ if E[ω] > α,

γ +

∫ z

qLF(θ)

(θ∗)−1(ẑ)v′(ẑ) dẑ if E[ω] = α,

cqLF(θ) +

∫ z

qLF(θ)

(θ∗)−1(ẑ)v′(ẑ) dẑ if E[ω] < α,

where (θ∗)−1(z) = sup{θ ∈ Θ : q∗(θ) ≥ z} is the generalized inverse of the optimal allocation
rule, and γ ∈ [0, cqLF(θ)].

Outside of im q∗, the payment schedule is not uniquely determined: when E[ω] < α, it suffices
to price units below q∗(θ) and above q∗(θ) at the marginal price c; whereas when E[ω] ≥ α, it
suffices to price units below q∗(θ) at zero and above q∗(θ) at c.
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Proof. By the Milgrom and Segal (2002) envelope theorem, we have

t∗(θ) = θv(q∗(θ))− U(θ)−
∫ θ

θ

v(q∗(s)) ds.

Because q∗(θ) is nondecreasing and bounded, it is differentiable almost everywhere, and so we
have for almost all z ∈ im q∗ = [q∗(θ), q∗(θ)] that

d

dz
T S(z) =

dt∗/dθ

dq∗/dθ
= (θ∗)−1(z)v′(z),

which, on integrating and applying our previous observations about the payment made by the
lowest type, gives the desired result.

Note that Proposition 11 implies that the total subsidy rule satisfies

d

dz
S(z) = c− d

dz
T S(z)

= c− (θ∗)−1(z)v′(z)

= c− (θ∗)−1(z)
c

H((θ∗)−1(z))
,

which is nonnegative because H(θ) ≥ θ, according with our finding in Proposition 1 that total
subsidy payments are increasing in quantity.
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B Structure of Optimal Subsidies

In this section, we derive the structure of the optimal subsidy mechanism for increasing and
decreasing ω, proving Proposition 3 and Proposition 4 stated in Section 5.2.

B.1 Proof of Proposition 3 (Negative Correlation)

To derive Proposition 3, we study the implications of a decreasing ω(θ) on the virtual welfare
J(θ), separately when the opportunity cost of funds is high and low, focusing on the sign of the

distortion term, equal to
∫ θ

θ
[ω(s)− α] dF (s)

αf(θ)
for θ ∈ (θ, θ].

High opportunity cost of funds: E[ω] ≤ α. When the opportunity cost of funds is high,
Theorem 1 implies that the optimal mechanism is laissez-faire. To see this in terms of the
construction of the subsidy type, note that a decreasing ω implies that

∫ θ

θ
[ω(s) − α] dF (s) is

quasiconvex in θ, while it is zero at θ and nonpositive at θ when E[ω] ≤ α. As a result, the
distortion term is nonpositive for all θ ∈ Θ, as illustrated in Figure 11.26

θ

θ
θ

θ

subsidy type H(θ) virtual welfare J(θ) lower bound θ

Figure 11: Subsidy types for decreasing welfare weights and a high opportunity cost of funds. In this
case, the lower-bound constraint binds for all types.

Low opportunity cost of funds: E[ω] > α Proposition 2 implies that there is always public
provision of the good when E[ω] > α. To determine the quantity of public provision and any
26 In Figures 11, 12, 13, and 14, we have depicted examples in which there are no non-monotonicities in J(θ) other

than that caused by the point mass at θ. But even under monotonicity assumptions on ω(θ), the virtual welfare
J(θ) may contain additional non-monotonicities because the distortion term depends inversely on f(θ), which
may also be non-monotone, possibly leading to additional ironing intervals in H(θ).
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other subsidies, we construct the subsidy type, noting again that a decreasing ω implies that∫ θ

θ
[ω(s)−α] dF (s) is quasiconvex in θ, while it is zero at θ and positive at θ when E[ω] > α. This

means there are two possibilities for the sign of the distortion term:

(a) The distortion term is positive for all types θ ∈ Θ. This requires ω(θ) ≥ α for all θ ∈ Θ,
in which case, the social planner wants to distort the allocation of each type upward. The
subsidy type equals the ironed virtual welfare, as illustrated in Figure 12(a), so q∗ = qSD.

(b) There exists a type θ̂ ∈ Θ such that the distortion term is nonnegative for θ ≤ θ̂ and
nonpositive for all θ ≥ θ̂. In this case, the social planner wants to distort the allocation
of types lower than θ̂ upward and distort the allocation of types greater than θ̂ downward.
There are two possibilities either:

(i) J |[θ,θ̂](θ̂) = J(θ̂) = θ̂ (i.e., θ̂ is not in the interior of an ironing interval of J), in which case
H(θ) = J(θ) on [θ, θ̂] and then H(θ) = θ on [θ̂, θ], as shown in Figure 12(b)(i). Writing
θ̂ = θα as in Table 1, q∗(θ) = qSD(θ) for θ ≤ θα, and q∗(θ) = qLF(θ) for θ ≥ θα, with
the associated payment schedule derived using Proposition 11, incorporating quantity
discounts between θ1 (the end of the ironing interval of J(θ) starting at θ) and θα, as
illustrated in Figure 1(a) .

(ii) J |[θ,θ̂](θ̂) > J(θ) = θ̂ (i.e., θ̂ is in the interior of an ironing interval of J), in which case
there is a least type θα ≥ θ̂ for which J |[θ,θα](θα) = θα. In that case, H(θ) = J |[θ,θα](θ) on
[θ, θα] and H(θ) = θ on [θα, θ], as in Figure 12(b)(ii). This implies q∗ ≥ qSD, with strict
inequality on the ironing interval of J |[θ,θα] ending at θα, and q∗ = qLF on [θα, θ]. In this
case, the payment schedule, derived using Proposition 11, involves a free allocation of
qLF(θα) units for all agents and laissez-faire prices for additional consumption beyond
that amount.

B.2 Proof of Proposition 4 (Positive Correlation)

We again derive Proposition 4 by examining the implications of increasing ω for the distortion
term of the virtual welfare.

High opportunity cost of funds: E[ω] ≤ α. When ω is decreasing in θ, we have that∫ θ

θ
[ω(s)−α] dF (s) is quasiconcave in θ, while it is zero at θ and nonpositive at θ because E[ω] ≤ α.

This leads to two possibilities for the sign of the distortion term:
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θ
θθ

θ

(a) Here ω(θ) ≥ α for each θ, so the social planner distorts each type’s allocation upward, with a free endowment
for all types and quantity-dependent subsidies for additional units of the good.

subsidy type H(θ) virtual welfare J(θ) lower bound θ

θ
θθ θ1 θα(= θ̂)

θ

(b)(i) Here, the social planner distorts lower types’
consumption upward, via a free endowment of qLF(J(θ1))
and limited quantity-dependent subsidies for additional

units. Consumption of types θ ≥ θα is undistorted.

θ
θθ θ̂

θ
θα

(b)(ii) In this example, the social planner distorts lower
types’ consumption upward, via a free endowment of
qLF(θα), which can strictly exceed qSD(θ) for θ ≤ θα.

Consumption of types θ ≥ θα is undistorted.

Figure 12: Subsidy types for decreasing welfare weights and low opportunity cost of funds.

(a) The distortion term is nonpositive for all θ ∈ Θ, in which case maxθ ω(θ) < α, and the social
planner wants to distort all consumers’ consumption downward, but is prevented from doing
so by the (LB) constraint. As a result, H(θ) = θ, as illustrated in Figure 13(a), so q∗ = qLF,
and the social planner offers no subsidies.

(b) There exists a θα ∈ Θ such that the distortion term is nonpositive for θ ∈ [θ, θα] and
nonnegative for θ ∈ [θα, θ]. This means H(θ) = J(θ) for θ ≥ θα, and H(θ) = θ for θ ≤ θα,
as illustrated in Figure 13(b). As a result, q∗(θ) = qLF(θ) for θ ≤ θα, and q∗(θ) = qSD(θ) for
θ ≥ θα. By Proposition 11, the social planner implements this allocation using subsidies for
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consumption above a certain minimum level, as illustrated in Figure 1(b).

θ
θ

θ

θ

(a) In this case, the social planner wants to distort
consumption for all types downwards, but is

prevented from doing so by the (LB) constraint, so
q∗ = qLF.

θ
θ

θ
θα

θ

(b) In this case, the social planner wants to distort
consumption for higher types upwards, which it

does by offering discounts for consumption above a
minimum level.

subsidy type H(θ) virtual welfare J(θ) lower bound θ

Figure 13: Subsidy types with increasing welfare weights and a high cost of public funds.

Low opportunity cost of funds: E[ω] > α. In this case, Proposition 2 implies that there is
public provision of the good because E[ω] > α. To determine the quantity of public provision and
any other subsidies, we construct the subsidy type, noting again that an increasing ω implies that∫ θ

θ
[ω(s)−α] dF (s) is quasiconcave in θ, while it is zero at θ and positive at θ when E[ω] > α. It is

thus positive for all θ ∈ Θ, so the social planner wants to distort consumption of all types upward.
As illustrated in Figure 14, the subsidy type equals the ironed virtual welfare, so q∗ = qSD.

θ

θ
θ

θ

lower bound θvirtual welfare J(θ)subsidy type H(θ)

Figure 14: Subsidy types with increasing welfare weights and low opportunity cost of funds. Here, the
social planner wants to distort consumption for all types upwards, so the social planner offers a free

allocation with quantity-dependent subsidies for additional units of the good.
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C Omitted proofs

C.1 Restriction to Deterministic Mechanisms

Suppose the social planner were to use a randomized mechanism, and let M : Θ → ∆([0, A]× R)
be the randomized allocation and payment rule, with M(θ) determining for a type θ a joint
distribution over quantities and payments, assumed to be nondegenerate for some positive measure
of types. The constraints facing the social planner are now:

• incentive-compatibility
θ ∈ argmax

θ̂

E(q,t)∼M(θ̂)[θv(q)− t],

• individual rationality,
E(q,t)∼M(θ)[θv(q)− t] ≥ ULF(θ),

• no lump-sum transfers
E(q,t)∼M(θ)[t] ≥ 0,

which we assume need only be satisfied in expectation over M (but the argument is more or
less unchanged if all realizations of t must exceed 0), and

• the private market constraint

Pr
(q,t)∼M(θ)

[q ≥ qLF(θ)] = 1,

which we enforce on all realizations of the lottery (assuming the consumer could always top
up contingent on the outcome of the randomized mechanism).

We claim that the deterministic mechanism (q̂, t̂) in which q̂(θ) is the certainty equivalent of the
randomized quantity assigned in M(θ) and t̂(θ) is the expected payment under M(θ) satisfies all
the constraints and strictly improves the social planner’s objective. To see this, note that by this
construction, for all types θ, θ̂ ∈ Θ, we have E(q,t)∼M(θ̂)[θv(q)− t] = θv(q̂(θ̂))− t̂(θ̂), which implies
the usual incentive-compatibility constraint and individual rationality constraints are satisfied
for (q̂, t̂). The no-lump sum transfers constraint and private market constraints are also clearly
satisfied.

To see that this construction results in a strict improvement in the social planner’s objective,
consider any type θ that received a nondegenerate lottery in M . Recall that for a strictly concave
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valuation function, the certainty equivalent of any nondegenerate lottery q̂(θ) < E(q,t)∼M(θ)[q]. As
a consequence, the weighted consumer surplus∫

Θ

ω(θ)[θv(q̂(θ))− t̂(θ)] + α[t̂(θ)− cq̂(θ)] dF (θ)

is strictly larger than the weighted consumer surplus under the randomized mechanism∫
Θ

ω(θ)E(q,t)∼M(θ)[θv(q)− t] + αE(q,t)∼M(θ)[t− cq] dF (θ),

because the expected utility of each type θ is unchanged (as is his expected payment), and the
expected cost for the social planner is strictly reduced (because fewer total goods are produced).

We note that the strict preference for deterministic mechanisms relies on the strict concavity
of the consumer’s valuation function. Without strict concavity, the social planner might be
indifferent between the optimal mechanism identified in Theorem 2 and a mechanism including
randomization.

C.2 Existence and Uniqueness of Optimal Mechanism

Existence. Note that the social planner’s objective expressed in terms of q, (see (OPT-L) for
E[ω] > α and (OPT-H) for E[ω] ≤ α) is continuous in q (in the L1 topology). By the Helly
selection theorem, the set of nonincreasing and bounded functions q : R → [0, A] is compact,
so that the set of feasible allocation functions (a subset of that set) is compact as well. On the
other hand, the set of feasible allocation rules contains qLF and is thus nonempty. As a result, an
optimal solution exists.

Uniqueness. We now show that the optimal solution to the social planner’s problem is
unique, assuming that consumers have a strictly concave valuation function. Suppose, for a
contradiction, that q1 and q2 are distinct optimal solutions and consider q̃ defined by
v ◦ q̃(θ) = 1

2
[v(q1(θ)) + v(q2(θ))]. Clearly, q̃ is nondecreasing and feasible because each constraint

is linear in v ◦ q. On the other hand, because v is strictly concave, the social planner’s objective
is a strictly convex function of v ◦ q (the integrand may be written J(θ)ν(θ)− cv−1(ν(θ)), where
ν = v ◦ q and v−1 is strictly convex). But then by Jensen’s inequality, we have that the social
planner’s objective is strictly larger at q̃, contradicting the optimality of q1 and q2.
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C.3 Proof of Proposition 1 (Equivalent Representations of (IC-T))

Proof. We first show that (i) implies (ii). Suppose otherwise: that (q, t) satisfied the (IC-T)
constraint but could not be implemented by a subsidized payment schedule T S(z) with S(q) =

cq − T s(q) positive and nondecreasing. In that case, because as discussed in Section 2.4, any
mechanism can be implemented using a nondecreasing payment outside of im q, it must be the
case that t(θ′) < t(θ) for some θ′ ̸= θ with q(θ′) > q(θ). But then a consumer of type θ would be
better off reporting type θ′, because doing so would result in a higher consumption level q(θ′) at
a lower cost t(θ′), which can only increase his utility. But that violates the (IC-T) constraint.

For the converse, suppose that T S implements the mechanism (q, t) and S(z) = cz − T S(z)

is nondecreasing. Without loss of generality, we may assume that the slope of T S at any point
z ∈ [0, A] \ im q is zero (otherwise replacing the payment at z /∈ im q by the payment for the next
highest quantity in im q also implements the same mechanism because v′ > 0). On the other hand,
for any z > z′, we must have T S(z) − T S(z′) < c(z − z′), because S(z) is nondecreasing. Now,
suppose that (IC-T) were violated for type θ. In that case, we must have that there exists a θ′ ̸= θ

and z ≥ q(θ′) with

θv(z)− t(θ′)− c(z − q(θ′)) > θv(q(θ))− t(θ) = max
z

θv(z)− T S(z),

where the equality follows from the fact that T S implements (q, t). But this implies

θv(z)− T S(q(θ′))− c(z − q(θ′)) > θv(z)− T S(z),

or, equivalently,
T S(z)− T S(q(θ′)) > c(z − q(θ′)),

which contradicts our finding above.
To see that (i) implies (iii), note that (IC) follows from (IC-T) because the latter implies

θv(q(θ))− t(θ) ≥ V (θ, θ̂) ≥ θv(q(θ̂))− t(θ̂).

On the other hand, for any θ, θ′ ∈ Θ, we have by the concavity of v that

argmax
q≥q(θ′)

{θv(q)− [t(θ′) + c(q − q(θ′)]} = max{q(θ′), qLF(θ)},

so, if q(θ) satisfies the (IC-T) constraint, we must have that q(θ) ≥ qLF(θ). Thus (IC-T) implies
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(LB).
For the converse, suppose that q(θ) ≥ qLF(θ). We first establish for the lowest type θ that

t(θ) ≤ cq(θ). To see this, note that (IR) implies

t(θ) ≤ θv(q(θ))− θv(qLF(θ)) + cqLF(θ),

and θv(qLF(θ)) − cqLF(θ) ≥ θv(q(θ)) − cq(θ) by definition of qLF, so t(θ) ≤ cq(θ). That same
argument implies that the average price of the units of the good purchased by each type θ is no
greater than c (so t(θ) ≤ cq(θ) for all θ ∈ Θ), but to establish that the marginal price of any
units purchased is no greater than c, note that (IC)—via the Milgrom and Segal (2002) envelope
theorem—implies for any two types θ, θ′ ∈ Θ that

t(θ′)− t(θ) =

[
θ′v(q(θ′))− U(θ)−

∫ θ′

θ

v(q(s)) ds

]
−
[
θv(q(θ))− U(θ)−

∫ θ

θ

v(q(s)) ds

]
= θ′v(q(θ′))− θv(q(θ))−

∫ θ′

θ

v(q(s)) ds

=

∫ θ′

θ

sv′(q(s)) dq(s),

where the last equality employs integration-by-parts for the Lebesgue-Stieltjes integral. But if
q(θ) ≥ qLF(θ) for all θ ∈ Θ, the concavity of v implies that v′(q(θ)) ≤ v′(qLF(θ)) = c/θ, so
t(θ′) − t(θ) ≤ c[q(θ′) − q(θ)]. But this implies that the subsidy S(z) is nondecreasing in z for all
z ∈ im(q), so that, having established (ii) =⇒ (i), we also have (iii) =⇒ (i).

C.4 Additional Details for Proof of Theorem 1 (When the Social

Planner Uses Subsidies)

The key details of the proof of Theorem 1 are contained in Section 3, but we fill in the only missing
detail: that the total cost of the subsidy to consumers with types θ ≤ θ̂ is of lower order than the
linear benefits to types θ > θ̂.

To see this, we calculate the type θ̃ just indifferent to distorting its consumption to receive the
subsidy, which means

θ̃v(qLF(θ̂))− cqLF(θ̂) + ε = θ̃v(qLF(θ̃))− cqLF(θ̃).
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By monotonicity of demand, the set of types with distorted consumption under the ε−perturbed
subsidy schedule is (θ̃, θ̂). We thus bound θ̂ − θ̃.

Because v′′ < 0, we have that there exists a k > 0 such that v′′ < −k on intΘ. This implies
that v is strongly concave (cf. Watt (2022)), so

θ̃v(qLF(θ̂)) ≤ θ̃v(qLF(θ̃)) + c(qLF(θ̂)− qLF(θ̃))− k[qLF(θ̂)− qLF(θ̃)]2,

which implies
k[qLF(θ̂)− qLF(θ̃)]2 ≤ ε.

On the other hand,
∂

∂θ
D(c, θ) =

−c

θ2v′′[(v′)−1(c/θ)]
≥ c

kθ2
,

so
qLF(θ̂)− qLF(θ̃) ≥ c

kθ2
[θ̂ − θ̃].

Putting these inequalities together, we obtain

θ̂ − θ̃ ≤
√

ε

k

kθ2

c
∼ O(

√
ε).

But then since F is absolutely continuous, we have that F (θ̂)− F (θ̃) ∼ O(
√
ε) so the total costs

(bounded below by −αε per consumer) are O(ε
3
2 ). This means that the benefits are linear in ε

while the costs are O(ε
3
2 ), which means the net effect must be positive for sufficiently small ε.

C.5 Shutdown Benchmark

In this section, we derive the solution to the shutdown benchmark problem, in which the social
planner can foreclose the private market for the good.

In that case, the social planner’s problem takes the form:

max
(q,t)

∫
Θ

{
ω(θ) [θv(q(θ))− t(θ)]︸ ︷︷ ︸

consumer surplus

+α [t(θ)− cq(θ)]︸ ︷︷ ︸
total profit

}
dF (θ), (NO-PM)

such that (q, t) satisfies (IC), (IR), and (NLS),
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which can be rewritten as in Appendix A.1 as

max
q∈Q

α

∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ),

which differs from (OPT) only in the lack of a lower-bound constraint and the absence of the
terms outside the integrand (independent of q) arising from the stronger (IR) constraint in the
topping up problem.

We now show that the optimal allocation rule in this problem is

qSD(θ) = (v′)−1

(
c

J(θ)

)
.

To see this, note that qSD is the pointwise maximizer of the integrand∫
Θ

[J(θ)v(q(θ))− cq(θ)] dF (θ),

so, via similar logic to Appendix A.5, it suffices to show that for any feasible q ∈ Q,∫
Θ

[
J(θ)− J(θ)][v(qSD(θ))− v(q(θ))

]
dF (θ) ≥ 0.

But J(θ) = J(θ) except on ironing intervals of J , in which qSD is constant and J is the F -average
of J , so ∫

Θ

[
J(θ)− J(θ)

]
v(qSD(θ)) dF (θ) = 0,

as we showed in Appendix A.5. Finally, as we also showed in Appendix A.5, because any feasible
q is nondecreasing wherever J ̸= J , we have that∫

Θ

[
J(θ)− J(θ)

]
v(qSD(θ)) dF (θ) ≤ 0,

completing the proof.

C.6 Comparative Statics Proofs

To prove the comparative statics stated in Section 5.4, we characterize the change in virtual
welfare caused by the change in the economic primitive and examine the effect of that change on
the subsidy type and the resulting optimal subsidy mechanism. Our analyses use the following
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lemma, establishing the monotonicity of the ironing operator with respect to pointwise increases
in its argument.

Lemma 5 (monotonicity of ironing operator). Let J, J ′ be real-valued functions on Θ with J ′(θ) ≥
J(θ) for all θ ∈ Θ. Then J ′(θ) ≥ J(θ) for all θ ∈ Θ.

Proof. Recall (see, e.g., Reid (1968), Barron (1983), and Kang (2024)) that J solves

max
q∈Q

∫
Θ

−[J(θ)− q(θ)]2 dF (θ).

Consider the parametrized objective

max
q∈Q

∫
Θ

−[αJ ′(θ) + (1− α)J(θ)− q(θ)]2 dF (θ),

for α ∈ [0, 1] and write the solution of that problem for a fixed α as q∗α. By the above, we have
that q∗1 = J ′ and q∗0 = J .

Let ⪰ be the pointwise dominance partial order on the lattice Q, so that q ⪰ q′ if and only if
q(θ) ≥ q′(θ) for all θ ∈ Θ. We claim that q∗α is increasing in α in the pointwise dominance partial
order, which implies that J ′(θ) ≥ J(θ) for all θ ∈ Θ.

To establish this, note that the derivative of the parametrized objective with respect to α is∫
Θ

−2[αJ ′(θ) + (1− α)J(θ)− q(θ)][J ′(θ)− J(θ)] dF (θ),

which is increasing in q in the pointwise dominance partial order. As a result, the objective is
supermodular in (q, α), so that q∗α is increasing in the pointwise dominance partial order by the
Topkis Theorem (cf. Milgrom and Shannon, 1994).

C.6.1 Proof of Proposition 5 (Increasing Redistributive Preferences)

Proof. The increase in ω(θ) (in the sense of pointwise dominance) or the reduction in α leads to
a pointwise increase in the distortion term

∫ θ

θ
[ω(s) − α] dF (s) in the virtual welfare and thus a

pointwise increase in J . As a result, the value of the social planner’s objective increases for every
allocation rule q(·), and thus the value of the optimal mechanism also increases.

By Lemma 5, we have that J |θ,θ(θ) increases as a function of θ. As a result, the set of types
with J |θ,θ(θ) > θ (which is exactly the set of subsidized types) increases in the sense of inclusion,
and the target HT (introduced in Appendix A) also increases pointwise.
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Applying Lemma 5 again, the increase in the target HT implies that the subsidy type H(θ)

increases for each type θ. Because each type’s allocation is an increasing function of H(θ), that
implies that each agent’s allocation increases as well. By the envelope theorem, the consumer
surplus of each type θ also increases.

Finally, we show that the subsidy received by each type increases. To do so, we show an even
stronger result: that the subsidy schedule, S(q), becomes more generous. Because we established
above that the allocation of each type also increases, that implies that the subsidy received by
each type also increases. We argue in two steps: first, we show that the subsidy received by the
lowest type increases (while the consumption of that type increases), and second, we show that
the subsidy increases more quickly as a function of q.

For the lowest type, if E[ω] ≤ α before the change, then it received no subsidy, and so any
pointwise increase in the distortion term can only increase the subsidy received on the first q∗(θ)

units (in particular, if E[ω] > α after the change, otherwise the consumption level is also
unchanged). If E[ω] > α before the change, then the pointwise increase in the distortion term
leads to an increase in his free allocation, which is an increase in the subsidy received for the
first q∗(θ) units.

To see that the subsidized payment schedule is steeper, note that by Proposition 11

d

dz
S(z) = c− (θ∗)−1(z)v′(z),

and (θ∗)−1(z) is reduced pointwise (because q(θ) is increasing and increases pointwise).

C.6.2 Proof of Proposition 6 (Change in Interdependence)

Proof. As discussed in Section 5.4, the increase in the sense of majorization leads to a pointwise
decrease in the virtual welfare function. As a result, the reverse of the analysis in the proof of
Proposition 5 applies, leading to a less generous subsidy mechanism.

C.6.3 Proof of Proposition 7 (Increasing Demand)

Proof. A change in demand or costs results in no change to the virtual welfare weights, and so by
Theorem 2, there is no change in the subsidy type. This implies there is no change in the set of
types subsidized.

We now show that a pointwise increase in v′ : [0, A] → R+ or a decrease in c leads to an
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increase in q∗(θ) = (v′)−1(c/H(θ)). For the decrease in c, it suffices to note that

∂

∂c
(v′)−1

(
c

H(θ)

)
=

1

H(θ)v′′((v′)−1(c/H(θ)))

which is nonpositive by the strict concavity of v. For the pointwise increase in the marginal
valuation v′, note that since v′ is a nonincreasing function (because v is strictly concave), a
pointwise increase in v′ leads to a pointwise increase in (v′)−1, which implies a pointwise increase
in q∗. By the envelope theorem, this also implies an increase in the consumer surplus of each type.

C.7 Proofs of Extensions

C.7.1 Proof of Proposition 8 (Equilibrium Effects)

Proof. As in the case with the constant marginal cost c, we can rewrite the objective eliminating
the (IC) constraint as follows:

max
q∈Q

E[ω − α]U(θ) +

∫
Θ

(
θ −

∫ θ

θ
ω(s)− α dF (s)

αf(θ)

)
v(q(θ)) dF (θ)− αC

(∫
Θ

q(θ) dF (θ)

)
,

subject to the (IR’), (NLS), and (PM’). Given any allocation function q and the price
p = S−1

(∫
Θ
q(θ) dF (θ)

)
it effects in the private market, the (IR’) and (NLS) constraints can be

eliminated and the objective can be rewritten as

max
q∈Q

∫
Θ

J(θ)v(q(θ))−pq(θ) dF (θ)+

∫
Θ

pq(θ) dF (θ)−αC

(∫
Θ

q(θ) dF (θ)

)
+(terms independent of q) ,

for the same J(θ) defined as in the main analysis, subject to the constraint that
q(θ) ≥ (v′)−1(p/θ) = D(p, θ).

Replacing J(θ) with the subsidy type as defined in Theorem 2, we obtain the related problem

max
q∈Q

∫
Θ

H(θ)v(q(θ))− pq(θ) dF (θ) +

∫
Θ

pq(θ) dF (θ)− αC

(∫
Θ

q(θ) dF (θ)

)
,

subject to q(θ) ≥ D(p, θ) and p = S−1
(∫

Θ
q(θ) dF (θ)

)
. But by the First Welfare Theorem, we

have that q∗ defined as in Proposition 8 is the maximizer of this objective (which is the Paretian
welfare objective for consumers with preferences determined by their subsidy type H(θ)).
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It thus remains to show that the maximizer of this expression is the same as the maximizer of
the actual objective. But, as in the proof of Theorem 2, this involves showing for all feasible q

that

∫
Θ

[J(θ)v(q∗(θ))− pq∗(θ)] dF (θ) +

∫
Θ

pq∗(θ) dF (θ)− αC

(∫
Θ

q∗(θ) dF (θ)

)
≥∫

Θ

[J(θ)v(q(θ))− pq(θ)] dF (θ) +

∫
Θ

pq(θ) dF (θ)− αC

(∫
Θ

q(θ) dF (θ)

)
,

given our previous finding that

∫
Θ

[H(θ)v(q∗(θ))− pq∗(θ)] dF (θ) +

∫
Θ

pq∗(θ) dF (θ)− αC

(∫
Θ

q∗(θ) dF (θ)

)
≥∫

Θ

[H(θ)v(q(θ))− pq(θ)] dF (θ) +

∫
Θ

pq(θ) dF (θ)− αC

(∫
Θ

q(θ) dF (θ)

)
,

which requires only that∫
Θ

[J(θ)−H(θ)] [v(q∗(θ))− v(q(θ))] dF (θ) ≥ 0,

which is exactly what we have shown in the proof of Theorem 2.

C.7.2 Proof of Proposition 9 (Exogenous Taxation)

Proof. By the linearity of demand, the lower-bound constraint (LBt) can be written
q(θ) ≥ D

(
c, θ

1+τ

)
. The optimal allocation rule then follows directly from Theorem 2′, replacing

L(θ) with θ
1+τ

.
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D Additional Material

D.1 Optimal Subsidies in Pictures: A Two-Type Example

In this appendix, we present a two-type example to clarify the key tradeoffs in subsidy design and
to build intuition for the optimal mechanism. We answer three key questions facing the social
planner: (i) how can the social planner increase consumer surplus most cost-effectively using in-
kind subsidies; (ii) when are such subsidies optimal; and (iii) how generous should they be?

For simplicity, we assume only in this section that there are low-demand and high-demand
consumers, with types θL and θH respectively (where θL < θH); we refer to them as L-type and
H-type consumers. The social planner assigns welfare weights ωL and ωH to these consumer
types, with the proportion of L-type consumers being πL, resulting in an average welfare weight
E[ω] = πLωL + (1− πL)ωH .

Without subsidies, L-type consumers purchase qLFL = D(c, θL) units and H-type consumers
purchase qLFH = D(c, θH) units of the good, as illustrated in Figure 15.

quantity

price
laissez-faire payment schedule

pL + c (q − qL)

qLFL qLFH

ŨLF
L

ŨLF
H

Ũ
′
L

Ũ
′
H

cqLFL

qL

pL

cqLFH

Figure 15: Illustrating the subsidy design problem using indifference curves.

The social planner chooses price-quantity pairs (pL, qL) and (pH , qH) for the L- and H-type
consumers, with the subsidy paid equal to the vertical distance between the laissez-faire payment
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schedule and the chosen point. As discussed in Section 2.4, the (IR) constraint requires that
(pL, qL) lies on or below ŨLF

L and that (pH , qH) lies on or below ŨLF
H , and the (NLS) constraint

requires pL and pH to be nonnegative. Fixing a choice of (pL, qL), the (IC-T) constraint requires
(pH , qH) to lie in the gray shaded region in Figure 15 or on its boundary.

How Does The Social Planner Deliver Subsidies?

We first study how the social planner can most cost-effectively increase a consumer’s surplus
through subsidies.

The least costly way for the social planner to increase a consumer’s surplus is through a
nondistortive cash transfer, meaning a cash payment tied to the laissez-faire consumption of the
good. This can be seen in Figure 15: the social planner minimizes the subsidy (the vertical distance
between the laissez-faire payment schedule and the price-quantity pair) on Ũ ′

L, for example, at qLFL
(as a result of the tangency condition for qLFL on ŨLF

L ).
However, the social planner’s ability to offer nondistortive cash transfers is limited by the

constraints in the subsidy design problem. For L-type consumers, the social planner can only
provide a nondistortive cash transfer of cqLFL before violating the (NLS) constraint. Moreover,
each dollar paid to L-type consumers tightens the (IC-T) constraint for H-type consumers. For
the H-type, the scope of nondistortive cash transfers depends on the allocation chosen for L-type
consumers: the social planner can only offer nondistortive cash subsidies to H-type consumers
when there is room between L-type consumers’ indifference curve given their subsidy level, Ũ ′

L,
and the (IC-T) constraints at qLFH .

To offer more generous subsidies while satisfying these constraints, the social planner must
distort the consumption of one or both types of consumers upwards. Each dollar of consumer
surplus gained via such distortive subsidies costs the social planner more than a dollar, as
consumers value a dollar’s worth of consumption beyond the laissez-faire amount less than a
dollar. Moreover, due to the strict concavity of the consumer’s preferences, that cost increases in
the consumption distortion.27 As a result, the social planner chooses the least distortive
allocation for its desired subsidy spending while satisfying the problem’s constraints. For the
L-type, the binding constraint is the (NLS) constraint. For the H-type, the binding constraint is
the L-type’s (IC-T) constraint, reflecting the L-type’s incentive to deviate upwards.

27 Another implication of this fact is that the marginal benefit to the social planner of additional units of subsidy
spending is decreasing.
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When Does The Social Planner Offer Subsidies At All?

We now study when the social planner benefits from subsidizing consumption, first determining
when the social planner subsidizes the L-type consumer. While the direct cost of subsidizing
the L-type to choose (pL, qL) is the vertical distance between that point and the laissez-faire
payment schedule, there is also an indirect cost: subsidizing L-type consumers tightens the (IC-T)
constraint for H-type consumers, forcing the social planner to offer at least the same subsidy to
the H-type. This means the social planner must trade off the benefit of increasing both types’
ω-weighted consumer surplus against the α-weighted cost of the subsidy. As discussed above,
the social planner can offer a small subsidy to L-type consumers without violating the (NLS)
constraint or distorting consumption, resulting in an equal increase in consumer surplus for both
types. Therefore, the social planner benefits from the initial units of subsidy for the L-type if and
only if E[ω] > α.

On the other hand, if E[ω] < α, the social planner may still find it beneficial to subsidize the
H-type but not the L-type. By tying a small subsidy to the H-type’s consumption of qLFH units of
the good, the social planner can increase the H-type’s surplus without distorting consumption or
violating the L-type’s (IC-T) constraint. Thus, the initial units of subsidy for the H-type benefit
the social planner if and only if ωH > α.

In summary, the social planner offers subsidies if and only if E[ω] > α or ωH > α.

How Generous Should Subsidies Be?

We now determine the optimal subsidy the social planner offers each consumer. We focus on two
cases that illustrate the main tradeoffs facing the social planner:

(a) Decreasing welfare weights, with ωL > α > ωH and E[ω] > α. In this case, the generosity of
subsidies offered to L-type consumers is constrained by both the (NLS) constraint and the
downward incentive constraint of H-type consumers, who can mimic the L-type and then
top up in the private market; and

(b) Increasing welfare weights, with ωL < α < ωH and E[ω] ≤ α. In this case, the generosity
of subsidies offered to H-type consumers is constrained by the upward incentive constraint
of L-type consumers, who may prefer to distort their consumption upwards to receive a
subsidy.

We then turn to the analysis of the only remaining case in which the social planner offers subsidies,
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which is when E[ω] > α and ωH > α, which combines features of both cases—namely, the binding
(NLS) constraint from (a) and the binding upward (IC-T) constraint from (b).

Decreasing Welfare Weights: ωL > α > ωH with E[ω] > α In this case, because E[ω] > α,
every dollar of nondistortive subsidy spending for the L-type strictly increases the social planner’s
objective. Therefore, the optimal subsidy for the L-type is at least cqL, leading to an optimal
price-quantity pair of the form (0, qL) for some qL ≥ qLFL , to be determined.

However, since ωH < α, the social planner does not benefit from further subsidizing the H-type
consumer’s consumption. This means, as illustrated in Figure 16(a), if qL ≤ qLFH , the downward
(IC-T) constraint binds for the H-type and the social planner assigns the H-type (c(qLFH −qL), q

LF
H ).

If qL > qLFH as in Figure 16(b), the (NLS) constraint binds for the H-type, and the social planner
assigns (0, qL) to the H-type as well.

To determine qL, the social planner must consider how her choice affects the constraints of the
H-type. She evaluates the marginal benefit of each additional unit of subsidized consumption for
the L-type as follows:

(i) For qL ≤ qLFH , the marginal benefit is πLωLθLv
′(qL) + πHωHc− αc.

(ii) For qL > qLFH , the marginal benefit is E[ωθ]v′(qL)− αc.

The optimal subsidy occurs when the marginal benefit of an additional unit of subsidized
consumption is zero, leading to two possibilities either:

(i) if πLωLθLv
′(qLFH ) + πHωHc < αc, then

q∗L = (v′)−1

(
(α− πHωH)c

πLωLθL

)
and p∗L = 0,

and q∗H = qLFH and p∗H = c(q∗H − q∗L), as illustrated in Figure 16(a), or

(ii) if πLωLθLv
′(qH) + πHωHc ≥ αc, then there is pooling with

q∗H = q∗L = (v′)−1

(
αc

E[ωθ]

)
,

and both types receive that quantity for free, as illustrated in Figure 16(b).

Holding the other parameters fixed, case (i) occurs for lower values of ωL while case (ii)
occurs when ωL is large enough. This means the social planner pools consumption only when her
preference to redistribute to the L-type is strong enough.
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p∗L + c(q − q∗L)

Ũ∗
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(a) q∗L ≤ qLFH = q∗H

price

quantity
qLFL qLFH

ŨLF
L

ŨLF
H

Ũ∗
L

q∗L = q∗H

Ũ∗
H

p∗L + c (q − q∗L)

(b) q∗L > q∗H

Figure 16: Illustrating the binding constraints when E[ω] > α and ωH < α.

Summing up, the optimal subsidy mechanism with decreasing welfare weights subsidizes
consumption up to some q∗L > qLFL and allows H-type consumers to top up in the private market,
if desired.

Increasing Welfare Weights: ωL < α < ωH with E[ω] < α In this case, because E[ω] < α,
even nondistortive spending for the L-type strictly reduces the social planner’s objective.
Therefore, the social planner does not subsidize the L-type, meaning q∗L = qLFL and p∗L = cqLFL .

The social planner can offer nondistortive cash subsidies to the H-type only until the L-
type’s upward (IC-T) constraint binds, which happens when θLv(q

LF
H ) − pH = θLv(q

LF
L ) − cqL.

Since ωH > α, each dollar spent on the H-type without distorting consumption benefits the
social planner. However, the social planner can do better by using distortive subsidies, chosen
so that the L-type’s (IC-T) constraint is just binding: θLv(qH) − pH = θLv(q

LF
L ) − cqL. This

implies that as the social planner increases qH , the subsidy it offers becomes less generous because
pH must also increase, so the social planner assesses the marginal benefit of increasing qH as
πHωHθHv

′(qH)− απH(c− θLv
′(qH)).

As a result, the optimal consumption level for the H-type is

q∗H = (v′)−1

(
αc

ωHθH − αθL

)
,

with corresponding price p∗H = θLv(q
∗
H)− θLv(q

LF
L ) + cqL, as illustrated in Figure 17.
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p∗H
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Ũ∗
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Figure 17: Illustrating the optimal subsidized payment schedule with two types satisfying ωL < α < ωH ,
with E[ω] ≤ α.

In short, the optimal subsidy mechanism with increasing welfare weights subsidizes
consumption of q∗H > qLFH units and does not offer subsidies for lower consumption levels.

High Welfare Weights for Both Types: E[ω] > α and ωH > α We now turn to the final
case with an active subsidy market, which is when E[ω] > α and ωH > α.

In this case, the social planner finds it beneficial to subsidize the L-type and, if feasible, to
further subsidize the H-type. The social planner can continue to offer subsidies to the H-type
up until the point at which the L-type’s (IC-T) constraint binds, so pH = θL[v(qH) − v(qL)].
As in the cases discussed in Appendix D.1, the social planner finds any non-distortive units of
subsidy spending strictly beneficial, so the good is provided to the L-type for free. Substituting
in the binding (IC-T) constraint, the social planner chooses qL and qH to maximize the weighted
objective

πLωLθLv(qL) + πHωH [θHv(qH)− θL[v(qH)− v(qL)]] + α [πHθL[v(qH)− v(qL)]− cπHqH − cπLqL] .

As a result, the optimal consumption levels are

q∗L = (v′)−1

(
cπL

πLωLθL + πHωHθL − απHθL

)
, p∗L = 0

while
q∗H = (v′)−1

(
c

ωHθH − ωHθL + αθL

)
, p∗H = θL[v(q

∗
H)− v(q∗L)].
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Ũ
′
H

q∗H

p∗H

q∗L

laissez-faire payment schedule

subsidized payment schedule

Figure 18: Illustrating an optimal subsidized payment schedule for E[ω] > α and ωH > α with upward
distortion of both types’ consumption.

The optimal mechanism is illustrated in Figure 18.

Key Takeaways

Summarizing our analysis, we have the following answers to the three questions posed at the
start of this section: (i) the most cost-effective way to increase consumer surplus entails the least
consumption distortion possible while satisfying the (NLS) and (IC-T) constraints; (ii) subsidies
are optimal if and only if E[ω] > α or ωH > α; and (iii) the optimal subsidy, in that case, distorts
the consumption of one or both types upwards. Compared to the standard screening analysis on
which this discussion was based, the subsidy design analysis is complicated by the possibility that
either upward or downward incentive constraints may bind and the need to account for additional
toppinng up deviations.

This paper generalizes this analysis to allow for richer consumer heterogeneity, as is needed to
apply our results to real-world markets. While the key intuitions developed in this section extend,
enriching our analysis to allow for more heterogeneity creates analytical complications not present
in the two-type model. First, as we have seen, both upward and downward incentive constraints
may bind, and while we could identify which binds for each type in the two-type model, doing
so for the continuum model is more complex. Second, in the two-type model, nondistortive cash
transfers are always available for sufficiently small cash subsidies; in the general model with a
continuum of types, any subsidy offered to an interior type leads to some distorted consumption
for nearby types. Third, in the two-type case, we have that welfare weights are either increasing
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or decreasing, but in the general model, welfare weights may be nonmonotonic, providing an
additional rationale for pooling adjacent types.

D.2 U- and Inverted U-Shaped Welfare Weights

In this section, we study the optimal subsidy mechanism under the assumption that the social
planner’s welfare weights and the consumption type are not monotonic transformations of one
another. Consequently, the good is neither “normal” nor “inferior” in the sense we described
above. In particular, we focus on the case in which the social planner has U- and inverted U-shaped
preferences, by which we mean the nonmonotone function ω(θ) is quasiconcave or quasiconvex,
respectively.

Inverted U-Shaped Preferences To characterize the optimal subsidy program under the
assumption of inverted U-shaped welfare weights, we first determine the effect of that assumption
on the distortion terms for the virtual welfare function, which depends on

∫ θ

θ
[ω(s) − α] dF (s).

As illustrated in Figure 19, the sign of ω(s) − α changes sign at most twice, so the sign of the
numerator of the distortion term changes at most twice as well.

ω(θ)

∫ θ

θ
ω(θ)− α dF (s)

θ

θ

α

α αα

α

Strong redistributive preferences Weak redistributive preferences

Figure 19: Plots of ω(θ) and
∫ θ
θ [ω(s)− α] dF (s) for inverted U-shaped welfare weights

When the cost of public funds is low (so E[ω] > α), it is either (i) always positive, or (ii)
positive and then negative. These distortion patterns are the same as those that apply to normal
goods, discussed in Appendix B.1. As a result, the structure of the optimal subsidy mechanism
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is the same as that case: a free endowment plus possibly additional quantity-dependent subsidies
up to a capped level.

When the cost of public funds is high (with E[ω] < α), there are three possibilities: (i) it is
always negative, (ii) it is negative and then positive, or (iii) it is negative and then positive and
then negative. In case (i), the distortion term is always negative (the same distortion pattern as
in the normal good case with a high cost of public funds), and the social planner finds it optimal
to implement the laissez-faire allocation rule with no subsidies. In case (ii), the social planner
finds it optimal to distort higher levels of consumption upwards, as in the inferior goods case
with a high cost of public funds, discussed in Appendix B.2. In case (iii), illustrated in the final
panel of Figure 19, the social planner offers subsidies for intermediate consumption levels. That is,
whereas the first units of the good are consumed at the competitive price, additional consumption
is subsidized up to a capped level. That optimal mechanism, illustrated in Figure 20, combines
the main features of the optimal subsidy mechanism for inferior goods (with a high cost of public
funds) and the optimal subsidy mechanism for normal goods (with a low cost of public funds).

θ

θ
θ

θ1

θ

θ2

(a) Construction of the optimal subsidy mechanism
(virtual welfare in red, lower bound in blue, subsidy type
in black)

q

0

0
Q1 Q2

(b) Payment schedule (laissez-faire in blue, subsidized
in black)

Figure 20: Optimal subsidy mechanism for inverted U-shaped preferences featuring subsidization of
intermediate consumption levels

Two justification for studying inverted U-shaped welfare preferences are as follows. First,
inverted U-shaped social preferences may arise naturally as a consequence of Downsian electoral
competition (Downs, 1957). Second, inverted U-shaped social preferences may correspond to
empirical regularities observed in the consumption data for the good, as follows. Suppose there
are two goods, Good A and Good B, and that Good B is considered a close (superior) substitute
to Good A. If total spending on the category of goods (Good A and Good B) is an increasing
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but concave function of income, and the share of spending on Good A is a decreasing but concave
function of income, then the resulting total spending on Good A is also a concave function of
income, corresponding to inverted U-shaped preferences.

U-Shaped Preferences To characterize the optimal subsidy program under the assumption of
U-shaped welfare weights, we again analyze the distortion terms for the virtual welfare function,
which depends on

∫ θ

θ
[ω(s)−α] dF (s). Once again, as illustrated in Figure 21, the sign of ω(s)−α

changes sign at most twice, so the sign of the numerator of the distortion term changes at most
twice as well.

ω(θ)

∫ θ

θ
ω(θ)− α dF (s)

α

α

α
α

α

E[ω] > α E[ω] ≤ α

Figure 21: Plots of ω(θ) and
∫ θ
θ [ω(s)− α] dF (s) for U-shaped welfare weights

When the cost of public funds is low, so E[ω] > α, there are three possibilities: (i) the
distortion term is positive, then negative, and then positive, (ii) the distortion term is positive
and then negative, or (iii) the distortion term is always positive. Cases (ii) and (iii) involve
the same distortion patterns as those for normal goods discussed in Appendix B.1, with a free
allocation and possibly discounts for additional consumption. Case (i) is unlike other cases we have
studied so far and results in allocations that are distorted upwards for both low and high types but
undistorted for intermediate types, implemented via a free endowment (and possibly additional
discounts for low levels of consumption) and additional discounts for consumption beyond a certain
level. We illustrate the optimal subsidy mechanism in Figure 22.

When the cost of public funds is high, so E[ω] < α, there are two possibilities: (i) the distortion
term is always negative, or (ii) the distortion term is negative and then positive. These distortion
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patterns resemble those associated with inferior goods with a high cost of public funds, so the
optimal subsidy mechanisms in these cases are the same as those discussed in Appendix B.2.

θ

θ
θ

θ1

θ

θ2

(a) Construction of the optimal subsidy mechanism
(virtual welfare in red, lower bound in blue, subsidy type
in black)

q

0

0
Q1 Q2

(b) Payment schedule (laissez-faire in blue, subsidized
in black)

Figure 22: Optimal subsidy mechanism for U-shaped preferences featuring a free endowment and
subsidization of higher consumption levels

D.3 Unit Demand

In this section, we discuss the optimal subsidy mechanism under the assumption of unit demand.
One minor complication that arises in this case is that the valuation function is not strictly concave,
and as a result, the optimal subsidy allocation rule is not generally unique. In this section, we
characterize the set of all optimal subsidy mechanisms in the unit demand case.

For the purpose of this section, we let v : [0, 1] → [0, 1] be defined by v(q) = q, where q is
interpreted as the probability that the consumer is allocated the good.28 We suppose, moreover,
that c ∈ intΘ, so not all agents purchase the good in the laissez-faire economy.

The optimal subsidy mechanism satisfies the linear program

max
q:Θ→[0,1]

∫
Θ

α[J(θ)− c]q(θ) dF (θ) + (terms independent of q)

such that q is non-decreasing and satisfies (LB): q(θ) = 1 for all θ ≥ c.

28 Although we show in the divisible good case that the restriction to deterministic mechanisms is without loss of
generality, that argument (in Appendix C.1) relies on the divisibility of the good (so that the certainty equivalent
is a feasible allocation). In the unit demand setting, we restore divisibility by treating q as the probability of
assignment of the good, but as a result—the mechanisms we study are necessarily randomized mechanisms.
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A characterization of the set of optimal subsidy mechanisms is contained in Proposition 12

Proposition 12 (optimal subsidies with unit demand). There exists an optimal subsidy
mechanism in the unit demand case which is deterministic (that is, with q(θ) ∈ {0, 1} for all
θ ∈ Θ), and any such deterministic subsidy mechanism allocates the good to all types higher than
the cutoff θ̂ satisfying

θ̂ ∈ argmax
θ∈[θ,c]

∫ c

θ

[J(s)− c] dF (s).

In particular, if θ̂ = θ, subsidies require E[ω] > α, and the subsidized price of the good is zero.
Otherwise, the subsidized price of the good is p = θ̂ and p satisfies

c = p+

∫ θ

p
ω(s)− α dF (s)

αf(p)
.

Under the following two conditions, there also exist optimal subsidy mechanisms with
randomization:

(i)
∫ θ

c
[J(s)− c] dF (s) ≤ 0 for all θ ≥ c, and

(ii)
∫ c

θ
[J(s)− c] dF (s) ≤ 0 for all θ ≤ c, with equality for some θ < c.

In that case, writing θ1 < θ2 < ...θI := c for the set of types less than c for which
∫ c

θ
[J(s) −

c] dF (s) = 0, any optimal randomized subsidy mechanism satisfies q∗(θ) = 0 for any θ < θ1,
q∗(θ) = 1 for any θ > c, and q∗(θ) = qi on any interval (θi, θi+1) for i = 1, 2, ..., I − 1, where
{qi} ⊆ [0, 1] is any nondecreasing sequence of constants. In that case, the price pi for purchasing
the good with probability qi can be calculated as p1 = q1θ1, and pi = pi−1 + (qi − qi−1)θi.

Proof. The characterization of the optimal allocation rule described in Proposition 12 follows
as a direct application of the solution of general linear programs with lower-bound constraints,
presented in Proposition 13 below. The two outstanding details concern the price of the subsidized
good and are as follows:

(a) The claim that c = p +

∫ θ

p
ω(s)− α dF (s)

αf(p)
for any optimal subsidy price p < c. This is the

first-order condition for the maximization problem maxp≤c

∫ c

p
[J(θ) − c] dF (θ), which is a

necessary condition for an interior maximum.

(b) The claim that free provision of the good is never optimal when the opportunity cost of
public funds is high. To see this, note that when the opportunity cost of public funds is
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high, J(θ) < θ < c, and thus
∫ c

p
[J(θ)− c] dF (θ) is strictly increasing at p = θ. As a result,

θ cannot be the maximizer.

General Linear Programs with Lower-Bound Constraints In this section, we solve the
linear program

max
q:Θ→[0,A]

∫
Θ

ϕ(θ)q(θ) dF (θ), subject to ∀θ ∈ Θ : q(θ) ≥ qL(θ) (LP)

for a monotone function qL : Θ → [0, A] and an integrable ϕ : Θ → R, assumed to be nonzero
almost everywhere in Θ. While this result can be obtained by taking appropriate limits in
Theorem 2′ above, the statement and proof of this special case is revealing in its own right, and
so we include it here.

In this section, moreover, we assume that A = 1 (this is without loss, as we can always divide
the quantity by A and think of q as the fraction of the total A allocated). In that case q and qL

may be interpreted as the distribution functions of random variables (adjusting the value of q and
qL at θ, if necessary, which clearly has no impact on the value of the linear program), and the
lower-bound constraint is a first-order stochastic dominance constraint, requiring that qL dominate
q in the first-order stochastic dominance sense.

For the statement of this result, write Φ(θ) =
∫ θ

θ
ϕ(s) dF (s) and let decminΦ be the decreasing

minorant of Φ, which is the largest nonincreasing function everywhere below Φ, as illustrated in
Figure 23. The type space Θ can be partitioned into intervals Θi (intersecting only at their
endpoints and increasing in the strong set order) in which either (a) Φ(θ) = decminΦ(θ) for all
θ ∈ Θi, or (b) Φ(θ) > decminΦ(θ) for all θ ∈ intΘi (with equality at the endpoints). Write
Θ = ∪iΘ

i for such a partition, and note that there may be adjacent intervals of type (b), as in
Figure 23.

The solutions of (LP) are characterized in the following proposition.

Proposition 13 (solutions to linear program). Any solution of (LP) satisfies the following:

(i) If Φ(θ) = decminΦ(θ) on Θi, then q∗(θ) = qL(θ) for all θ ∈ Θi.

(ii) If Φ(θ) > decminΦ(θ) on intΘi and supΘi = θ, then q∗(θ) = 1 for all θ ∈ Θi.
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Φ

decminΦ

θ

Figure 23: Constructing the Decreasing Minorant

(iii) Otherwise, if Φ(θ) > decminΦ(θ) on intΘi, write θ+ = supΘi. Then q∗(θ) is constant
on intΘi, with that constant determined as (a) any number in [limθ↑θ+ qL(θ), qL(θ+)] if Θi+1

satisfies decminΦ(θ) = Φ(θ) on Θi+1, or (b) any number in [limθ↑θ+ qL(θ), q
∗(θ+)] otherwise.

While the statement of Proposition 13 appears complicated, the intuitive description of the
optimizers is simpler: wherever Φ(θ) = decminΦ(θ), any optimizer equals the lower bound,
otherwise the optimizer is a constant, typically determined by the value of qL at the right
endpoint of that interval. The complication arises from the possibility that qL is discontinuous at
that right endpoint (in which case the optimizer can be constant at any level within that jump)
and the possibility that there are adjacent intervals on which Φ > decminΦ, in which case the
feasible constants on each interval depend on the constant chosen on the subsequent interval.

Proof. We have the following upper bound on the value of (LP):∫
Θ

ϕ(θ)q(θ) dF (θ) = q(θ)Φ(θ)−
∫
Θ

Φ(θ) dq(θ)

≤ Φ(θ)−
∫
Θ

decminΦ(θ) dq(θ)

≤ Φ(θ)−
∫
Θ

decminΦ(θ) dqL(θ)

= Φ(θ)− decminΦ(θ) +

∫
Θ

d

dθ
decminΦ(θ)qL(θ) dθ.

The first and fourth lines use integration-by-parts for the Lebesgue-Stieltjes Integral, the second
line follows by the construction of decminΦ as a minorant (and uses the fact that q(θ) = 1 because
qL(θ) = 1 by assumption), and the third by the fact that qL first-order stochastically dominates q
and − decminΦ is increasing.
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We now argue that the upper bound is obtained by any solution taking the form described
in Proposition 13 and that any other feasible q results in a strictly lower objective value. We
calculate

∫
Θ
ϕ(θ)q∗(θ) dF (θ) separately for each interval of type (i), (ii), and (iii) described in

Proposition 13.
On an interval Θi of type (i), we have∫

Θi

ϕ(θ)q∗(θ) dF (θ) =

∫
Θi

ϕ(θ)qL(θ) dF (θ) =

∫
Θi

d

dθ
decminΦ(θ)qL(θ) dθ,

because q∗(θ) = qL(θ) on Θi and because decminΘ(θ) = Θ(θ). On the other hand, for any feasible
q which strictly exceeds qL on some positive measure subset of Θi, it is clear that the objective
value is strictly lower because ϕ(θ) < 0 by construction on those intervals.

On any interval Θi of type (ii), we have∫
Θi

ϕ(θ)q∗(θ) dF (θ) =

∫
Θi

ϕ(θ) dF (θ) = Φ(θ)− decminΦ(θ) +

∫
Θi

d

dθ
decminΦ(θ)qL(θ) dθ,

by construction of decminΦ (noting that the integral term is zero, as decminΦ is constant). On
the other hand, for any other feasible q, we have∫

Θi

ϕ(θ)q(θ) dF (θ) = Φ(θ)− Φ(θ−)−
∫
Θi

(Φ(θ)− Φ(θ−)) dq(θ),

where θ− is the left endpoint of Θi so decminΦ(θ) = Φ(θ−) by construction, which is clearly less
than the result obtained above (because Φ(θ)− Φ(θ−) > 0 and q is a positive measure).

Finally, on any interval of type (iii), we have∫
Θi

ϕ(θ)q∗(θ) dF (θ) =

∫
Θi

ϕ(θ) dF (θ) = 0 =

∫
Θi

d

dθ
decminΦ(θ)qL(θ) dθ,Φ

by construction of decminΦ and because d
dθ

decminΦ is constant on any such interval. Once again,
for any other feasible q, we have∫

Θi

ϕ(θ)q(θ) dF (θ) = −
∫
Θi

(Φ(θ)− Φ(θ−)) dq(θ) < 0.

Adding these expressions together, we obtain that
∫
Θ
ϕ(θ)q∗(θ) dF (θ) obtains the upper bound

we derived above, and that the objective value for any alternative q is strictly worse.
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